• 제목/요약/키워드: recovery temperature

검색결과 1,659건 처리시간 0.03초

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process

  • Taki, Golam;Islam, Mohammad Nazrul;Park, Seong-Jae;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.175-180
    • /
    • 2018
  • Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water flow rate were explored, and the results indicate that temperature has a great impact on crude oil removal and recovery. The correlation coefficients for oil removal ($R^2=0.74$) and recovery ($R^2=0.98$) suggest that the proposed quadratic model is useful. When setting the target removal and recovery (>99%), BBD-RSM determined the optimum condition to be a temperature of $250^{\circ}C$, extraction time of 120 min, and water flow rate of 1 mL/min. An experiment was carried out to confirm the results, with removal and recovery efficiencies of 99.69% and 87.33%, respectively. This result indicates that BBD is a suitable method to optimize the process variables for crude oil removal and recovery from contaminated soil.

비글견에서 Propofol 완전정맥마취와 Isoflurane 휘발성 유도/유지 마취 시 심폐기능과 회복의 비교 (Comparison of Cardiopulmonary Effects and Recovery between Total Intravenous Anesthesia with Propofol and Volatile Induction/maintenance Anesthesia with Isoflurane in Beagle Dogs)

  • 이수한
    • 한국임상수의학회지
    • /
    • 제22권3호
    • /
    • pp.259-263
    • /
    • 2005
  • To compare cardiopulmonary effects and recovery between total intravenous anesthesia (TIVA) with propofol (PRO group, n=5) and volatile induction/maintenance anesthesia (VIMA) with isoflurane (ISO group, n=5), we investigated changes of heart rate, $SpO_2$, arterial pressure, rectal temperature and respiratory rate during 60 minute anesthesia and 40 minute recovery period in beagle dogs, and investigated recovery (extubation, head lift, sternal position and righting) after 60 minute anesthesia. Rectal temperature was significantly low in ISO group (p<0.05) from 10 to 100 minute. Heart rate was significantly low in ISO group (p<0.05) at 40, 50, 60 minute. Respiratory rate was significantly low in PRO group (p<0.05) at induction and 70 minute. $SpO_2$ tendency was similar. Systolic arterial pressure (SAP) was significantly low in ISO group (p<0.05) at induction and during anesthesia. Recovery was similar in two groups. We concluded that TIVA with propofol is useful in stabilizing rectal temperature and arterial pressure during anesthesia and provide fast and stable recovery.

CFD를 이용한 로켓 공력가열 온도 예측 (AERODYNAMIC HEATING TEMPERATURE OF SOUNDING ROCKET USING CFD)

  • 김성룡;김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.89-92
    • /
    • 2006
  • Aerodynamic heating temperature shown in a NASA's sounding rocket test data was reproduced with CFD technique, comparing with those with analytical method CFD made heat transfer rates and recovery temperatures as the flight trajectory, which made it possible to calculate the wall temperature of rocket. The predicted wall temperature was compared with analytically predicted temperatures. Both the temperatures were compatible although their recovery temperature and heat transfer rates are a little different.

  • PDF

견직물의 방추성에 관한 연구 I. 견방사직물을 중심으로 (Studies on the Wrinkle Resistance of the Silk Fabric I. Wrinkle Recovery behavior of spun.silk fabric)

  • 배두근;남중희;김종호
    • 한국잠사곤충학회지
    • /
    • 제28권1호
    • /
    • pp.61-65
    • /
    • 1986
  • 견방견직물을 여러 가지 조건하에서 방추도를 측정하여 다음과 같은 결과를 얻었다. 1. 온도, 습도가 높아지면 방추도는 감소하며 습도의 영향이 온도의 영향보다 더 크게 작용한다. 2. 주름회복시간과 온도, 습도에 따른 방추도의 변화는 y=a+b ln T의 실험식으로 나타났고 회복시간의 경과에 따라 방추도는 증가하지만 300sec 이상에서는 평형상태에 도달했다. 3. 견직물과 화섬직물과 주름거동을 비교한 결과 견직물은 화섬직물에 비해 Voigt 모형에서의 K1값이 월등히 낮았다. 4. 조추시간에 따른 방추도 변화는 시간의 경과에 따라 점점 감소하지만 실험식에서 a값의 변화는 인정할 수 없었다. 5. 조추가중에 의한 방추도의 변화에 있어서도 동일한 결과를 얻었다.

  • PDF

다공성 분리막을 이용한 최적의 Bio-gas 분리인자 도출 (A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane)

  • 이승원;정창훈;김정권
    • 한국환경과학회지
    • /
    • 제20권8호
    • /
    • pp.1011-1019
    • /
    • 2011
  • The objective of this research is to evaluate optimal conditions of permeability and selectivity on the polysulfone membrane for efficiency of separation of $CH_4$ by checking four factors which are temperature, pressure, gas compositions and gas flow rates. When higher pressure was applied at the input, lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ were shown. It has the tendency to show lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ at the output as higher temperature at input. The lower flow rates make higher efficiency of recovery of $CH_4$ and lower efficiency of separation of $CH_4$. Finally, over 90% efficiency for $CH_4$ separation and recovery conditions are temperature ($-5^{\circ}C$), pressure (8 bar), gas composition rate (6:4) ($CH_4:CO_2$) and gas flow rate ($5\ell$/min). These conditions make higher separation and recovery efficiency such as 90.1% and 92.1%, respectively.

로터리형 폐열회수 환기장치의 열전달 성능 향상에 관한 연구 (A Study on the Improvement of Efficiency of Heat Transfer on the Heat Recovery Ventilator with Rotating Porous Disk)

  • 조동현
    • 수산해양교육연구
    • /
    • 제26권6호
    • /
    • pp.1352-1357
    • /
    • 2014
  • In the present study, the heat transfer performance on the heat recovery ventilator with rotary disk were experimentally investigated. The temperature of entrance and exit of the heat recovery ventilator, air flow distribution of high temperature air and low temperature air, heat flux and the overall heat transfer coefficients are estimated from the experimental results. As the number of revolution of rotary disk, the air flow distribution increase, heat flux and overall heat transfer coefficients increase.

유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향 (Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery)

  • 이송우;나영수;감상규;이민규
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1131-1139
    • /
    • 2013
  • Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.

외기 온습도 조건에 따른 폐열회수 환기장치의 열전달 특성 및 불확실성에 관한 연구 (A Study on Heat Transfer Characteristics and Uncertainty of Heat Recovery Ventilator for Various Outdoor Temperature/Humidity Conditions)

  • 한화택;추연복
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.608-613
    • /
    • 2008
  • The purpose of the present paper is to investigate the effect of outdoor weather conditions on the performance of a heat recovery ventilator. Experiments have been performed by varying outdoor temperature/humidity conditions with the indoor conditions fixed at the standard conditions by KARSE. Results indicate humidity efficiency shows larger uncertainties than temperature efficiency in general. With the heat generation by an internal fan removed, the modified temperature efficiency remains almost constant regardless of the indoor-outdoor temperature difference. The enthalpy efficiency can have very large or negative values in case the outdoor conditions are in the vicinity of the indoor enthalpy line. The direction of heat flow, in such a case, can be opposite to that of moisture flow between two air streams. Discussions are included about various interesting features of the psychrometric processes taking place in a heat recovery ventilator.

엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가 (Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery)

  • 허형석;배석정;이동혁;이헌균;김태진
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

구형축열체를 이용한 축열기의 성능예측 (Prediction of Performance in heat regenerator with spheres)

  • 조한창;조길원;이용국
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF