• Title/Summary/Keyword: recording properties

Search Result 270, Processing Time 0.039 seconds

Magnetic Properties of Electrodeposited Co-Ni-P Alloys (Co-Ni-P합금도금층의 자기적 성질에 관한 연구)

  • Paik, M. S.;Kim, Y. K.;Kang, T.;Sohn, H. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.96-102
    • /
    • 1991
  • Co-Ni-P alloys were electrodeposited from NH4Cl-sulfate-hypophosphite baths under various plating conditions. Their effective anisotropic magnetic field which is one of the important properties for magnetic recording materials were investigated as the function of alloy compositions and c-axis orientation. The preferred orientation and the contents of Ni and P depend on the pH of solutions and also on the current density. It was found that the alloy films deposited from the solutions of pH4 at high current density had c-axis orientation parallel to the growth direction and the effective anisotropic fields sufficient for perpendicular magnetic recording application.

  • PDF

Effect of structural change on the magnetostriction coefficient in the CoCrPt alloy thin films

  • Im, Mi-Young;Jeong, Jong-Ryul;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.178-179
    • /
    • 2002
  • CoCrPt alloy films are one of the most promising candidates for high-density perpendicular magnetic recording media due to their strong perpendicular magnetic anisotropy (PMA) and high coercivity [1]. In order to achieve high-density magnetic recording media, it is essential to characterize the magnetoelastic properties since experimental and theoretical research has revealed a significant magnetoelastic contribution to the magnetic properties in magnetic thin films. (omitted)

  • PDF

Novel Properties of Boron Added Amorphous Rare Earth-transition Metal Alloys for Giant Magnetostrictive and Magneto-optical Recording Materials

  • Jai-Young Kim
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.78-81
    • /
    • 1998
  • Large magneto crystalline anisotropy energy and demagnetization energy of rare earth-transition metal (RF-TM) alloys play roles of bottlenecks towards their commercial applications for giant magnetostrictive and blue wavelength magneto optical recording materials, respectively. To solve the above problems, boron is added into amorphous RE-TM alloys to produce its electron transferring. The boron added amorphous RE-TM alloys show novel magnetic and magneto-optical properties as follows; 1) an amorphous $(Sm_{33}Fe_{76})$97B3 alloy obtains the magnetostriction of$ -550{times}10^{-6}$ at 400 Oe compared with saturation magnetostriction of$ -60{\times}10^{-6}$ in conventional Ni based alloys, 2) an amorphous$ (Nd_{33}Fe_{67})_{95}B_5$ alloy increases effective magnetic anisotropy to$ -0.5{\times}10^{-6} ergs/cm^3 from -3.5{\times}10^6 ergs/cm^3$ without boron, which correspond to the polar Kerr rotation angles of 0.52$^{\circ}$and 0.33$^{\circ}$, respectively. These results attribute to selective 2p-3d electron orbits exchange coupling (SEC).

  • PDF