• 제목/요약/키워드: recorded earthquake

검색결과 280건 처리시간 0.021초

설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석 (Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum)

  • 전대한;강병두;김재웅
    • 한국지진공학회논문집
    • /
    • 제10권5호
    • /
    • pp.63-71
    • /
    • 2006
  • 건축구조물의 비선형 지진응답해석에서 입력지진동은 구조물의 탄소성 지진응답을 좌우하는 중요한 요소이다. 지진동파형은 지진발생과 전파경로에 따른 여러 가지 인자에 의해 그 특성이 결정되기 때문에 구조물의 지진응답해석에서 일반성을 갖는 입력지진동을 선정하는 것은 매우 어려운 문제이다. 본 논문은 내진설계용 스펙트럼에 대응하는 인공지진동파형을 작성한 후, 작성된 인공지진동에 대한 탄소성 응답스펙트럼 특성을 분석한 것이다. 여기서 작성된 인공지진동파형은 과거의 지진에서 얻어진 기록지진동파형을 이용하여 기록지진동과 동일한 위상각을 가지며, 감쇠정수 h=5%일 때의 내진설계용 스펙트럼과 거의 일치하도록 작성되었다. 작성된 인공지진동은 원 기록지진동과 동일한 위상각을 가지며, 주기 $T=0.02{\sim}10.0sec$ 범위에서 설계용 스펙트럼과 매우 근접하게 작성되었다. 인공지진동을 입력한 1자유도계의 탄성 및 탄소성 지진응답해석을 수행하여 탄소성 응답스펙트럼 및 탄소성 응답특성을 분석하였다. 본 논문에서 작성된 인공지진동은 건축구조물의 탄소성 지진응답해석용 입력지진동으로 충분히 타당성이 있다고 사료된다.

국내 액상화 평가를 위한 지진파 선정 (Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea)

  • 장영은;서환우;김병민;한진태;박두희
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

1936년 지리산 지진에 대하여 (On the 1936 Chirisan Earthquake)

  • 김성균
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.66-70
    • /
    • 1998
  • The Chirisan earthquake occurred on July 4, 1936 was the largest earthquake known to have occurred in Southern Korean in the twentieth century. After, the magnitude of the earthquake was estimated to be ML = 5.0. It was recorded at eleven seismological stations and tremors were felt throughout the Southen Peninsula. However, damages were restricted in relatively narrow area including the SSangysa Temple and nearby town Sukmoon. Fairy detailed report(Hayata, 1940) was published and some reserches based on the report have been performed. The present study briefly introduces damages and researches corresponding the earthquake. Intensity attenuation and peak ground acceleration are also evaluated.

  • PDF

2016년 경주지진에 의한 국내 도시철도 교량의 잠재적 손상평가 (Damage Potential of a Domestic Metropolitan Railway Bridge subjected to 2016 Gyeongju Earthquake)

  • 이도형;심재엽;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.461-472
    • /
    • 2016
  • Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.

Downhole 지진계측자료에 의한 지반의 비선형성 평가에 관한 연구 (A Study on the Evaluation of Soil Nonlinear Characteristics by Seismic Recorded Data at Downhole Array)

  • 장정범;서용표;이종림;이계희
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.29-35
    • /
    • 2001
  • 전단파속도가 1,050m/sec 이하인 경우의 기초지반에 대한 내진해석에서는 지반-구조물 상호작용해석이 반드시 수행되어야 하며, 이러한 기초지반에서는 강지진동 작용시 지반의 비선형성이 현저하게 나타나므로 내진해석시 지반의 비선형성은 필수적으로 고려되어야 한다. 따라서, 본 연구에서는 입력지진동에 따른 지반의 비선형 거동을 평가하기 위한 방법으로서 기존의 수치해석적인 방법에 비하여 평가절차가 단순하고 신뢰성이 높은 Downhole 지진계측자료에 의한 평가방법을 제안하였다. 대만 화련부지를 대상으로 본 연구에서 제안한 지반의 비선형성 평가방법에 대한 신뢰성을 검증한 결과, 기존의 SHAKE프로그램에 의한 평가결과 및 지진응답 계측결과에 잘 일치하는 높은 수준의 정확성을 보임으로써 그 신뢰성 및 가용성을 확인할 수 있었다.

  • PDF

설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum)

  • 정재경;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점 (Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake)

  • 이철호;박지훈;김태진;김성용;김동관
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

지반거동의 지속시간이 건물에 미치는 영향 (Duration Effect of the Ground Motion on Structures)

  • 김희철
    • 전산구조공학
    • /
    • 제5권1호
    • /
    • pp.91-96
    • /
    • 1992
  • 내진구조는 건축규준에 의하여 강제성을 띤 이후 많은 발전을 하였으나 아직도 완전하게 이해되지는 않고 있다. 본 논문은 실제로 발생하였던 두 지진의 지반운동을 10층의 철골조에 적용시켜 얻은 결과를 비교하였다. 1989년 California의 Loma Prieta에서 발생한 규모 7.1의 지진기록 12세트와 1985년 Chile의 Valparaiso에서 발생한 규모 7.8의 지진기록 9세트를 UBC의 지진지역 2B에 알맞게 조절하였다. 비슷한 규모를 가진 두 지진의 지반변위를 건물에 직접 적용시켜서 비교한 결과 그 지속시간이 긴 Chile지진이 상대적으로 지속시간이 짧은 California지진보다 약 2배 정도 큰 영향을 건물에 미치는 것이 발견되었다. 내진구조의 설계에 있어서 최대지반운동과 더불어 지반운동의 지속시간도 매우 중요하게 고려되어야 할 사항이다.

  • PDF

우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석 (A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea)

  • 김정한;김재관;허태민;이진호
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.