• Title/Summary/Keyword: reconfigurable manufacturing information system

Search Result 6, Processing Time 0.023 seconds

Integration of SoC Test and Verification Using Embedded Processor and Reconfigurable Architecture (임베디드 프로세서와 재구성 가능한 구조를 이용한 SoC 테스트와 검증의 통합)

  • Kim Nam-Sub;Cho Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.38-49
    • /
    • 2006
  • In this paper, a novel concept based on embedded processor and reconfigurable logic is proposed for efficient manufacturing test and design verification. Unlike traditional gap between design verification and manufacturing test, proposed concept is to combine both design verification and manufacturing test. The semiconductor chip which is using the proposed concept is named "SwToC" and SwToC stands for System with Test On a Chip. SwToC has two main features. First, it has functional verification function on a chip and this function could be made by using embedded processor, reconfigurable logic and memory. Second, it has internal ATE on a chip and this feature also could be made by the same architecture. To evaluate the proposed SwToC, we have implemented SwToC using commercial FPGA device with embedded processor. Experimental results showed that the proposed chip is possible for real application and could have faster verification time than traditional simulation method. Moreover, test could be done using low cost ATE.

Optimal Production-Inventory Control Policy with an e-MarketPlace as an Emergent Replenishment/Disposal Mode in Reconfigurable Manufacturing System (재구성가능생산시스템 환경에서 긴급 재고 보충 및 처리 대안으로써 e-MarketPlace를 고려한 최적 생산-재고관리정책)

  • Jang, Il-Hwan;Lee, Chul-Ung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.273-284
    • /
    • 2007
  • This paper studies a periodic review inventory model with an e-MarketPlace transaction in reconfigurable manufacturing system(RMS). A decision maker can expand/reduce production capacity/quantities and/or replenish/dispose inventories from/to e-MarketPlace urgently to satisfy the stochastic demands. If inventories are replenished or disposed through e-MarketPlace, this leadtime is shorter than the production leadtime, but unit purchasing or selling cost is more expensive than that of expanding capacity or reducing production quantities respectively. Henceforth, trade-off on these alternatives is considered. In addition to this, in order to consider the economy of scale, our model includes the fixed cost for purchasing from e-MarketPlace and capacity expansion. We use dynamic programming and K convexity methods to characterize the nature of the optimal policy. Finally, We present the optimal inventory control policy which is composed by the combinations of a base stock and (s,S) type policy.

  • PDF

Process Management Systems for Integrated Real-Time Shop Operations in Heterogeneous Multi-Cell Based Flexible Manufacturing Environment (이기종 멀티 셀 유연생산환경에서의 실시간 통합운용을 위한 공정관리 체계)

  • Yoon, Joo-Sung;Nam, Sung-Ho;Baek, Jae-Yong;Kwon, Ki-Eok;Lee, Dong-Ho;Lee, Seok-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.281-286
    • /
    • 2013
  • As the product lifecycle is getting shorter and various models should be released to respond to the needs of customers and markets, automation-based flexible production line has been recognized as the core competitiveness. According to these trends, system vendors supply cell-level systems such as FMC(Flexible Manufacturing Cell) that is integration of core functions of FMS(Flexible Manufacturing System) and RMC(Reconfigurable Manufacturing Cell) that can easily extend components of FMC. In the cell-based environment, flexible management for shop floor composed of existing job shop, FMCs and RMCs from various system vendors has emerged as an important issue. However, there could be some problems on integrated operation between heterogeneous cells to use vendor-specific cell controllers and on seamless information flow with high level systems such as ERP(Enterprise Resource Planning). In this context, this paper proposes process management systems supporting integrated shop operation of heterogeneous multi-cell based flexible manufacturing environment: First of all, (1) Integrated Shop Operation System to apply the process management system is introduced, and (2) Multi-Layer BOP(Bill-Of-Process) model, a backbone of the process management system, is derived with its data structure. Finally, application of the proposed model is illustrated through system implementation results.

A Reconfigurable Mixed-Model Assembly System of Cockpit Module using RFID/ZigBee Protocol (RFID/ZigBee 프로토콜을 활용한 가변구조 혼합형 모델 칵핏모듈 조립생산 시스템)

  • Koo, Ja-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8940-8947
    • /
    • 2015
  • Mixed-model assembly line has been widely used in automotive assembly industry to quickly respond the diverse product demands. But, this model can lead to part confusion, which is a source for assembly errors when parts are physically interchangeable in a mixed-model assembly line. With the recent application of new technologies such as radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) to the assembly process, real-time information has become available in this manufacturing systems through IT infrastructures. At first, this paper presents an RFID application for assembly processes, specifically, for a mixed-model assembly line. Thus, to ensure that parts be picked accurately, each cockpit module on the assembly line is attached with a RFID tag and the tag is scanned using a RFID reader and recognizes the vehicle, and each part of the cockpit module is attached with a barcode and the barcode is scanned by a barcode reader and each part is identified correctly for the vehicle. Second, this paper presents a ZigBee wireless sensor network (WSN) protocol-based application for a reconfigurable mixed-model assembly line of cockpit module to reduce the assembly errors and the cost of the change/reconfiguration on the assembly lines due to the various orders and new models from the motor company, avoiding the wiring efforts and inconvenience by wiring between the several RFID devices and the IT server system. Finally, we presents the operation results for several years using this RFID/ZigBee wireless sensor network (WSN) protocol-based cockpit module assembly line.

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.