• Title/Summary/Keyword: recommender

Search Result 526, Processing Time 0.03 seconds

A Recommendation Procedure for Group Users in Online Communities

  • O Hui-Yeong;Kim Hye-Gyeong;Kim Jae-Gyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.344-353
    • /
    • 2006
  • Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.

  • PDF

A Personalized Recommender System, WebCF-PT: A Collaborative Filtering using Web Mining and Product Taxonomy (개인별 상품추천시스템, WebCF-PT: 웹마이닝과 상품계층도를 이용한 협업필터링)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • v.15 no.1
    • /
    • pp.63-79
    • /
    • 2005
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is known to be the most successful recommendation technology, but its widespread use has exposed some problems such as sparsity and scalability in the e-business environment. In this paper, we propose a recommendation system, WebCF-PT based on Web usage mining and product taxonomy to enhance the recommendation quality and the system performance of traditional CF-based recommender systems. Web usage mining populates the rating database by tracking customers' shopping behaviors on the Web, so leading to better quality recommendations. The product taxonomy is used to improve the performance of searching for nearest neighbors through dimensionality reduction of the rating database. A prototype recommendation system, WebCF-PT is developed and Internet shopping mall, EBIB(e-Business & Intelligence Business) is constructed to test the WebCF-PT system.

A Recommender System for Device Sharing Based on Context-Aware and Personalization

  • Park, Jong-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.174-190
    • /
    • 2010
  • In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).

A New Kernelized Approach to Recommender System (커널 함수를 도입한 새로운 추천 시스템)

  • Lee, Jae-Hun;Hwang, Jae-Pil;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.624-629
    • /
    • 2011
  • In this paper, a new kernelized approach for use in a recommender system (RS) is proposed. Using a machine learning technique, the proposed method predicts the user's preferences for unknown items and recommends items which are likely to be preferred by the user. Since the ratings of the users are generally inconsistent and noisy, a robust binary classifier called a dual margin Lagrangian support vector machine (DMLSVM) is employed to suppress the noise. The proposed method is applied to MovieLens databases, and its effectiveness is demonstrated via simulations.

A Study on the Effect of Co-Ratings and Correlation Coefficient for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun;Park, Ji-Won;Kim, Chul-Seung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.59-69
    • /
    • 2006
  • Pearson's correlation coefficient and Vector similarity are generally applied to The users' similarity weight of user based recommender system. This study is needed to find that the correlation coefficient of similarity weight is effected by the number of pair response and significance probability. From the classified correlation coefficient by the significance probability test on the correlation coefficient and pair of response, the change of MAE is studied by comparing the predicted precision of the two. The results are experimentally related with the change of MAE from the significant correlation coefficient and the number of pair response.

  • PDF

User-Item Matrix Reduction Technique for Personalized Recommender Systems (개인화 된 추천시스템을 위한 사용자-상품 매트릭스 축약기법)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.1
    • /
    • pp.97-113
    • /
    • 2009
  • Collaborative filtering(CF) has been a very successful approach for building recommender system, but its widespread use has exposed to some well-known problems including sparsity and scalability problems. In order to mitigate these problems, we propose two novel models for improving the typical CF algorithm, whose names are ISCF(Item-Selected CF) and USCF(User-Selected CF). The modified models of the conventional CF method that condense the original dataset by reducing a dimension of items or users in the user-item matrix may improve the prediction accuracy as well as the efficiency of the conventional CF algorithm. As a tool to optimize the reduction of a user-item matrix, our study proposes genetic algorithms. We believe that our approach may relieve the sparsity and scalability problems. To validate the applicability of ISCF and USCF, we applied them to the MovieLens dataset. Experimental results showed that both the efficiency and the accuracy were enhanced in our proposed models.

  • PDF

Dynamic Fuzzy Cluster based Collaborative Filtering

  • Min, Sung-Hwan;Han, Ingoo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.203-210
    • /
    • 2004
  • Due to the explosion of e-commerce, recommender systems are rapidly becoming a core tool to accelerate cross-selling and strengthen customer loyalty. There are two prevalent approaches for building recommender systems - content-based recommending and collaborative filtering. Collaborative filtering recommender systems have been very successful in both information filtering domains and e-commerce domains, and many researchers have presented variations of collaborative filtering to increase its performance. However, the current research on recommendation has paid little attention to the use of time related data in the recommendation process. Up to now there has not been any study on collaborative filtering to reflect changes in user interest. This paper proposes dynamic fuzzy clustering algorithm and apply it to collaborative filtering algorithm for dynamic recommendations. The proposed methodology detects changes in customer behavior using the customer data at different periods of time and improves the performance of recommendations using information on changes. The results of the evaluation experiment show the proposed model's improvement in making recommendations.

  • PDF

A Personalized Recommender System for Mobile Commerce Applications (모바일 전자상거래 환경에 적합한 개인화된 추천시스템)

  • Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Seung-Tae;Kim, Hye-Kyeong
    • Asia pacific journal of information systems
    • /
    • v.15 no.3
    • /
    • pp.223-241
    • /
    • 2005
  • In spite of the rapid growth of mobile multimedia contents market, most of the customers experience inconvenience, lengthy search processes and frustration in searching for the specific multimedia contents they want. These difficulties are attributable to the current mobile Internet service method based on inefficient sequential search. To overcome these difficulties, this paper proposes a MOBIIe COntents Recommender System for Movie(MOBICORS-Movie), which is designed to reduce customers' search efforts in finding desired movies on the mobile Internet. MOBICORS-Movie consists of three agents: CF(Collaborative Filtering), CBIR(Content-Based Information Retrieval) and RF(Relevance Feedback). These agents collaborate each other to support a customer in finding a desired movie by generating personalized recommendations of movies. To verify the performance of MOBICORS-Movie, the simulation-based experiments were conducted. The results from this experiments show that MOBICORS-Movie significantly reduces the customer's search effort and can be a realistic solution for movie recommendation in the mobile Internet environment.

Association Rule Based Display Area Recommender System (연관 규칙 기반의 표출 영역 추천 시스템)

  • Kim, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.550-552
    • /
    • 2022
  • A video wall controller has a special type of multi-monitor that displays multiple monitors on a single large screen by arranging them consecutively. Operator maps and stores the video and monitor in advance. In a small system the mapping task of videos and monitors is simple. But as the number of monitors increases, the number of mapping cases increases, and thus work efficiency decreases. In this paper, we propose a association rule-based recommender system which help improve the efficiency of mapping task.

  • PDF

A Context-aware Recommender System Architecture for Mobile Healthcare in a Grid Environment (모바일 헬스케어를 위한 그리드 기반의 컨텍스트 추천 시스템)

  • Hassan, Mohammad Mehedi;Han, Seung-Min;Huh, Eui-Nam
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.40-43
    • /
    • 2008
  • This paper describes a Grid-based context-aware doctor recommender system which recommends appropriate doctors for a patient or user at the right time in the right place. The core of the system is a recommendation mechanism that analyzes a user's demographic profile, user's current context information (i.e., location, time, and weather), and user's position so that doctor information can be ranked according to the match with the preferences of a user. The performance of our architecture is evaluated compare to centralized recommender system.