최근 실내 위치기반서비스를 위한 다양한 측위 기술의 발전으로 실내에서도 사용자의 위치측정이 가능해짐에 따라 다양한 형태의 실내 위치기반 서비스가 개발되고 있다. 이에 쇼핑몰이나 백화점 등의 대규모 상업 공간 같은 복잡한 실내 공간에서 사용자에게 가장 적합한 위치나 매장을 추천하는 개인화된 POI 추천 시스템의 개발이 필요하게 되었다. POI 추천을 위해서는 사용자의 이동성과 대규모 상업공간의 공간성을 고려한 사용자 관심지점 탐사 기법의 연구가 필요하다. 이에 본 논문에서는 실내 위치기반 서비스의 POI 추천 시스템의 구현과 사용자들의 이동 데이터로부터 다양한 관심지점을 고려하기 위해 사용자가 일정 시간 동안 머무른 지점을 Stay point라 정의하고 실내공간에서 Stay point를 탐색하는 알고리즘을 제안하였다. 또한 제안된 알고리즘을 이용하여 탐색한 Stay point로부터 방문패턴을 탐사하여 POI 추천 시스템을 구현하였다. 구현된 시스템은 사용자의 모든 이동 로그를 이용한 패턴탐사보다 데이터양을 획기적으로 줄임으로써 빠른 패턴탐사와 메모리 사용량을 줄일 수 있었다.
현대 사회의 서비스 방식은 대면 방식보다 비대면 방식을 선호하는 추세이다. 하지만 신발과 같이 상품을 추천하는 서비스는 대면 방식의 서비스가 불가피하다. 본 논문에서는 비대면 서비스를 목적으로 자동으로 발의 사이즈를 측정하고, 측정 결과를 기반으로 신발을 추천하는 시스템을 제안한다. 제안방법의 성능을 분석하기 위해 사이즈 측정 오차율과 추천성능을 분석하였다. 추천성능 실험에 사용한 방법은 총 10가지이고, 이의 방법 중 가장 좋은 성능을 보이는 추천 방법을 시스템에 적용하였다. 오차율에 대한 실험결과, 사이즈 관련 오차가 작음을 알 수 있었고, 추천성능에 대한 실험결과, 추천에 대한 유의한 결과를 도출할 수 있었다. 본 논문에서의 제안방법은 실험실 수준으로 향후 실제 환경으로 확대 적용할 필요가 있다.
연구자들에게 지식을 습득하여 연구 활동에 도입하는데 걸리는 소요시간을 단축하는 것은 연구생산성 향상에 필수적인 요소라고 할 수 있다. 본 연구의 목적은 한민족과학기술자네트워크(KOSEN) 사용자들의 정보 이용 패턴을 군집화하고 그룹화 된 사용자들에게 맞는 개인화 추천서비스 알고리즘의 최적화 방안을 제안하는 것이다. 사용자들의 연구활동과 이용정보에 기반하여 적합한 서비스와 콘텐츠를 식별한 후 Spark 기반의 빅데이터 분석 기술을 적용하여 개인화 추천 알고리즘을 도출하였다. 개인화 추천 알고리즘은 사용자의 정보검색에 소요되는 시간을 절약하고 적합한 정보를 찾아내는데 도움을 줄 수 있다.
본 연구는 넷플릭스의 서비스 특성 요인을 콘텐츠 다양성, 요금제 적절성, 추천 시스템, N-스크린 서비스, 몰아보기, 서비스 품질 등 6개 차원으로 구분하고, 각 차원이 이용자 만족과 지속 사용 의도에 미치는 영향에 어떤 역할을 하는지 알아보고자 한다. 본 연구는 넷플릭스 서비스를 이용한지 1년 미만인 신규 가입자 202명을 대상으로 설문조사를 실시하였다. 분석 결과, 첫째, 넷플릭스 서비스의 콘텐츠 다양성, 추천 시스템, 몰아보기 기능, 서비스 품질은 이용자 만족에 정의 영향을 미치는 것으로 나타났다. 둘째, 넷플릭스 서비스 특성 인식이 지속 사용 의도에 미치는 직접 효과와 이용자 만족을 통해 영향을 미치는 간접 효과를 분석한 결과, 먼저 N-스크린 서비스는 지속 사용 의도에 직접 효과도 간접 효과도 모두 미치지 않았다. 반면에 콘텐츠 다양성, 추천 시스템, 몰아보기 기능과 서비스 품질은 지속 사용 의도에 대한 직접 효과는 유의미하지 않았지만, 이용자 만족을 통한 간접 효과는 유의미한 것으로 나타났다. 한편, 요금제 적절성은 지속 사용 의도에 미치는 직접 효과가 유의미했지만 이용자 만족을 통한 간접 효과가 유의미하지 않은 것으로 나타났다. 마지막으로 이용자 만족과 지속 사용 의도는 예측한 바와 같이 유의미한 정적 상관관계를 가지는 것으로 나타났다.
유비쿼터스 시대가 시작되면서 유비쿼터스 환경을 어떻게 제시할 것인지와 어떤 서비스와 이용 방법을 사용자에게 제공할 것인지가 중요해지고 있다. 본 논문에서는 모바일 환경에서 지능형 멀티 에이전트를 통해 사용자에게 도움되는 정보를 능동적으로 제공할 수 있는 시스템을 제안한다. 프로파일 모듀르 규칙 생성 모듈, 필터링 모듈, 서비스 모듈 구조로 구성된다. 추천 에이전트를 이용하여 미리 등록한 사용자의 정보를 기반으로 지능적인 사용자의 요구 파악을 가능하게 구성하였다. 이것을 응용하여 구현하고 실험을 통해 확인하였다.
This study tests consumer responses to online product recommendation service offered by a website. A product recommendation service refers to a filtering system that predicts and shows items that consumers would like to purchase based on their searches or pre-purchase information. The survey is conducted on 300 people in an age group between 20 and 40 years in a panel of an online survey firm. Data are analyzed using confirmatory factor analysis and structural equation modeling by AMOS 20.0. The results show that personalization quality does not have a significant effect on trust, but relationship quality and technology quality have a positive effect on trust. Three types of quality of recommendation service also have a positive effect on commitment. Trust and commitment are factors that increase service usage intentions. In addition, this study reveals the moderating effect of light users vs heavy users based on online shopping time. Light users show a negative effect of personalization quality on trust, indicating that they are likely to be uncomfortable to the service using personal information, compared to heavy users. This study also finds that trust vs commitment is an important factor increasing service usage intentions for heavy users vs light users.
학술정보 분석 서비스는 학술정보 온톨로지를 사용하여 연구과제의 심사자 선정과 연구자의 연구성과 분석에 필요한 정보를 제공해 주는 서비스이다. 연구과제의 심사자 추천 서비스에서는 과제의 신청 분야와 심사자의 전공 분야, 과제 신청자와 심사자의 관계, 심사자의 해당 분야에 대한 전문도를 고려하여 정확하고 공정한 심사자 추천이 이루어져야 한다. 연구성과 분석 서비스에서는 전공 분야별/기관별 연구성과물 현황, 전공 분야별 전문가 현황, 연구자 네트워크 등을 사용해서 연구자의 연구 현황 정보 제공은 물론 기관, 지역별 연구 성과 현황 정보도 제공되어야 한다. 본 연구에서는 학술정보 분석 서비스를 제공하기 위해 학술정보를 온톨로지로 구축하고, OntoFrame 기반의 추론 시스템을 적용하여 학술정보를 저장하고 지식 확장 과정을 수행한 후 심사자 추천 서비스와 연구성과 분석 서비스에 필요한 정보를 제공하였다. 본 논문에서는 학술정보 온톨로지의 구성과 OntoFrame 기반의 학술정보 시스템의 구성 및 서비스 방법을 제시하였고, 이를 통해 효과적인 학술정보 분석 서비스를 제공하였다.
The development of platform service based on the information and communication technology has revolutionized patterns of commercial transactions, driving the growth of global economy. Furthermore, the radical advancement of artificial intelligence(AI) presents the huge potential to innovate almost all the industrial and economic activities. Given these technological developments, the goal of this paper is to investigate AI's impact on the platform service innovation as well as its influence on the business performance. For the goal, this paper presents the review of the types of service innovation, the nature of platform services, and technological characteristics of leading AI technologies, such as chatbot and recommendation system. As an empirical study, this paper performs a multiple case study of Kakao Group which is the leading mobile platform service with the most advanced AI in Korea. To understand the role and effect of AI on Kakao platform service, this study investigated three cases, including chatbot agent of Kakao Bank, Smart Call service of Kakao Taxi, and music recommendation system of Kakao Mellon. The analysis results of the case study show that AI initiated innovations in platform service concepts, service delivery, and customer interface, all of which lead to a significant decrease in the transaction costs and the personalization of services. Finally, for the successful development of AI, this research emphasizes the significance of the accumulation of customer and operational data, the AI human capital, and the design of R&D organization.
모바일 단말기에서 사용자의 상황을 고려하고 사용자의 취향이나 특성을 반영하여 정보를 찾아주거나 추천하는 서비스 시스템은 개념적인 정보만을 제한적으로 추천한다. 또한 사용자의 특성에 따른 정보 선호도를 제공하지 않으므로 정확한 정보 추천의 어려운 단점이 있다. 따라서 본 논문에서는 사용자 특성에 따른 선호도를 고려하여 정확한 상황 정보를 추천 할 수 있는 개선된 k-means 알고리즘을 적용하여 사용자 특성에 따른 선호도 추천 시스템을 제안하였다. 본 연구에서는 사용자 특성에 따른 선호도를 상관 계수를 이용하여 구하고 사용자의 특성 선호도를 개선된 k-means 알고리즘을 이용하여 추천하였다. 제한적인 개념의 정보만을 제공하던 시스템에서 사용자의 특성에 따른 정보 선호도를 제공하여 정확한 정보를 추천하므로 제한된 정보 추천의 단점을 해결하였다. 성능 실험은 기존의 서비스 시스템들과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 85%, 재현율은 68%로 나타났다.
본 연구는 작업현장, 교육현장, 기타 시공간에서 작업자의 현재 상황이나 담당업무 맥락에 따라 개인의 숙련도나 학습 진도에 맞추어 비공식학습과 공식학습 모두 실시간으로 발생할 수 있는 개인 추천 서비스 구현을 목표로 한다. 이에 복합지식을 기반으로 실시간으로 코칭과 조언을 들을 수 있으며, 다차원적인 관계를 쉽게 검색하고 추천할 수 있는 개인 맞춤형 복합지식 지능화 추천 시스템을 설계하였다. 이를 위해, 복합지식 저장소와 복합지식관리 모듈을 개발하였다. 특정 산업분야에서는 장기적으로 축척되는 지식베이스를 근간으로 하여 전문적인 문제해결 혹은 코칭 서비스 등을 부가적으로 창출할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.