• 제목/요약/키워드: recommendation service system

검색결과 372건 처리시간 0.026초

실내 위치기반 서비스를 위한 사용자 관심지점 탐사 기법과 POI추천 시스템의 구현 (The Development of Users' Interesting Points Analyses Method and POI Recommendation System for Indoor Location Based Services)

  • 김범수;이연;김경배;배해영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.81-91
    • /
    • 2012
  • 최근 실내 위치기반서비스를 위한 다양한 측위 기술의 발전으로 실내에서도 사용자의 위치측정이 가능해짐에 따라 다양한 형태의 실내 위치기반 서비스가 개발되고 있다. 이에 쇼핑몰이나 백화점 등의 대규모 상업 공간 같은 복잡한 실내 공간에서 사용자에게 가장 적합한 위치나 매장을 추천하는 개인화된 POI 추천 시스템의 개발이 필요하게 되었다. POI 추천을 위해서는 사용자의 이동성과 대규모 상업공간의 공간성을 고려한 사용자 관심지점 탐사 기법의 연구가 필요하다. 이에 본 논문에서는 실내 위치기반 서비스의 POI 추천 시스템의 구현과 사용자들의 이동 데이터로부터 다양한 관심지점을 고려하기 위해 사용자가 일정 시간 동안 머무른 지점을 Stay point라 정의하고 실내공간에서 Stay point를 탐색하는 알고리즘을 제안하였다. 또한 제안된 알고리즘을 이용하여 탐색한 Stay point로부터 방문패턴을 탐사하여 POI 추천 시스템을 구현하였다. 구현된 시스템은 사용자의 모든 이동 로그를 이용한 패턴탐사보다 데이터양을 획기적으로 줄임으로써 빠른 패턴탐사와 메모리 사용량을 줄일 수 있었다.

Shoe Recommendation System by Measurement of Foot Shape Imag

  • Chang Bae Moon;Byeong Man Kim;Young-Jin Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.93-104
    • /
    • 2023
  • 현대 사회의 서비스 방식은 대면 방식보다 비대면 방식을 선호하는 추세이다. 하지만 신발과 같이 상품을 추천하는 서비스는 대면 방식의 서비스가 불가피하다. 본 논문에서는 비대면 서비스를 목적으로 자동으로 발의 사이즈를 측정하고, 측정 결과를 기반으로 신발을 추천하는 시스템을 제안한다. 제안방법의 성능을 분석하기 위해 사이즈 측정 오차율과 추천성능을 분석하였다. 추천성능 실험에 사용한 방법은 총 10가지이고, 이의 방법 중 가장 좋은 성능을 보이는 추천 방법을 시스템에 적용하였다. 오차율에 대한 실험결과, 사이즈 관련 오차가 작음을 알 수 있었고, 추천성능에 대한 실험결과, 추천에 대한 유의한 결과를 도출할 수 있었다. 본 논문에서의 제안방법은 실험실 수준으로 향후 실제 환경으로 확대 적용할 필요가 있다.

과학기술정보 서비스 플랫폼에서의 빅데이터 분석을 통한 개인화 추천서비스 설계 (Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform)

  • 김도균
    • 한국비블리아학회지
    • /
    • 제28권4호
    • /
    • pp.501-518
    • /
    • 2017
  • 연구자들에게 지식을 습득하여 연구 활동에 도입하는데 걸리는 소요시간을 단축하는 것은 연구생산성 향상에 필수적인 요소라고 할 수 있다. 본 연구의 목적은 한민족과학기술자네트워크(KOSEN) 사용자들의 정보 이용 패턴을 군집화하고 그룹화 된 사용자들에게 맞는 개인화 추천서비스 알고리즘의 최적화 방안을 제안하는 것이다. 사용자들의 연구활동과 이용정보에 기반하여 적합한 서비스와 콘텐츠를 식별한 후 Spark 기반의 빅데이터 분석 기술을 적용하여 개인화 추천 알고리즘을 도출하였다. 개인화 추천 알고리즘은 사용자의 정보검색에 소요되는 시간을 절약하고 적합한 정보를 찾아내는데 도움을 줄 수 있다.

구독형 OTT 서비스 특성이 이용자 만족과 지속 사용 의도에 미치는 영향: 넷플릭스 이용자를 대상으로 (Effects of Service Characteristics of a Subscription-based OTT on User Satisfaction and Continuance Intention: Evaluation by Netflix Users)

  • 정용국;장위
    • 한국콘텐츠학회논문지
    • /
    • 제20권12호
    • /
    • pp.123-135
    • /
    • 2020
  • 본 연구는 넷플릭스의 서비스 특성 요인을 콘텐츠 다양성, 요금제 적절성, 추천 시스템, N-스크린 서비스, 몰아보기, 서비스 품질 등 6개 차원으로 구분하고, 각 차원이 이용자 만족과 지속 사용 의도에 미치는 영향에 어떤 역할을 하는지 알아보고자 한다. 본 연구는 넷플릭스 서비스를 이용한지 1년 미만인 신규 가입자 202명을 대상으로 설문조사를 실시하였다. 분석 결과, 첫째, 넷플릭스 서비스의 콘텐츠 다양성, 추천 시스템, 몰아보기 기능, 서비스 품질은 이용자 만족에 정의 영향을 미치는 것으로 나타났다. 둘째, 넷플릭스 서비스 특성 인식이 지속 사용 의도에 미치는 직접 효과와 이용자 만족을 통해 영향을 미치는 간접 효과를 분석한 결과, 먼저 N-스크린 서비스는 지속 사용 의도에 직접 효과도 간접 효과도 모두 미치지 않았다. 반면에 콘텐츠 다양성, 추천 시스템, 몰아보기 기능과 서비스 품질은 지속 사용 의도에 대한 직접 효과는 유의미하지 않았지만, 이용자 만족을 통한 간접 효과는 유의미한 것으로 나타났다. 한편, 요금제 적절성은 지속 사용 의도에 미치는 직접 효과가 유의미했지만 이용자 만족을 통한 간접 효과가 유의미하지 않은 것으로 나타났다. 마지막으로 이용자 만족과 지속 사용 의도는 예측한 바와 같이 유의미한 정적 상관관계를 가지는 것으로 나타났다.

모바일 환경을 위한 지능형 추천 에이전트에 관한 연구 (A Study on Intelligent Recommendation Agent for a Mobile Envionment)

  • 주복규;김만선
    • 한국콘텐츠학회논문지
    • /
    • 제6권4호
    • /
    • pp.55-62
    • /
    • 2006
  • 유비쿼터스 시대가 시작되면서 유비쿼터스 환경을 어떻게 제시할 것인지와 어떤 서비스와 이용 방법을 사용자에게 제공할 것인지가 중요해지고 있다. 본 논문에서는 모바일 환경에서 지능형 멀티 에이전트를 통해 사용자에게 도움되는 정보를 능동적으로 제공할 수 있는 시스템을 제안한다. 프로파일 모듀르 규칙 생성 모듈, 필터링 모듈, 서비스 모듈 구조로 구성된다. 추천 에이전트를 이용하여 미리 등록한 사용자의 정보를 기반으로 지능적인 사용자의 요구 파악을 가능하게 구성하였다. 이것을 응용하여 구현하고 실험을 통해 확인하였다.

  • PDF

온라인 상품추천 서비스에 대한 소비자 사용 의도 -신뢰-몰입의 매개역할을 중심으로- (Consumers' Usage Intentions on Online Product Recommendation Service -Focusing on the Mediating Roles of Trust-commitment-)

  • 이하경;윤남희;장세윤
    • 한국의류학회지
    • /
    • 제42권5호
    • /
    • pp.871-883
    • /
    • 2018
  • This study tests consumer responses to online product recommendation service offered by a website. A product recommendation service refers to a filtering system that predicts and shows items that consumers would like to purchase based on their searches or pre-purchase information. The survey is conducted on 300 people in an age group between 20 and 40 years in a panel of an online survey firm. Data are analyzed using confirmatory factor analysis and structural equation modeling by AMOS 20.0. The results show that personalization quality does not have a significant effect on trust, but relationship quality and technology quality have a positive effect on trust. Three types of quality of recommendation service also have a positive effect on commitment. Trust and commitment are factors that increase service usage intentions. In addition, this study reveals the moderating effect of light users vs heavy users based on online shopping time. Light users show a negative effect of personalization quality on trust, indicating that they are likely to be uncomfortable to the service using personal information, compared to heavy users. This study also finds that trust vs commitment is an important factor increasing service usage intentions for heavy users vs light users.

OntoFrame 기반 학술정보 분석 서비스 - 심사자 추천과 연구성과 분석 - (The Academic Information Analysis Service using OntoFrame - Recommendation of Reviewers and Analysis of Researchers' Accomplishments -)

  • 김평;이승우;강인수;정한민;이정연;성원경
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권7호
    • /
    • pp.431-441
    • /
    • 2008
  • 학술정보 분석 서비스는 학술정보 온톨로지를 사용하여 연구과제의 심사자 선정과 연구자의 연구성과 분석에 필요한 정보를 제공해 주는 서비스이다. 연구과제의 심사자 추천 서비스에서는 과제의 신청 분야와 심사자의 전공 분야, 과제 신청자와 심사자의 관계, 심사자의 해당 분야에 대한 전문도를 고려하여 정확하고 공정한 심사자 추천이 이루어져야 한다. 연구성과 분석 서비스에서는 전공 분야별/기관별 연구성과물 현황, 전공 분야별 전문가 현황, 연구자 네트워크 등을 사용해서 연구자의 연구 현황 정보 제공은 물론 기관, 지역별 연구 성과 현황 정보도 제공되어야 한다. 본 연구에서는 학술정보 분석 서비스를 제공하기 위해 학술정보를 온톨로지로 구축하고, OntoFrame 기반의 추론 시스템을 적용하여 학술정보를 저장하고 지식 확장 과정을 수행한 후 심사자 추천 서비스와 연구성과 분석 서비스에 필요한 정보를 제공하였다. 본 논문에서는 학술정보 온톨로지의 구성과 OntoFrame 기반의 학술정보 시스템의 구성 및 서비스 방법을 제시하였고, 이를 통해 효과적인 학술정보 분석 서비스를 제공하였다.

플랫폼 서비스 혁신에 있어 인공지능(AI)의 역할과 효과에 관한 연구: 카카오 그룹의 인공지능 활용 사례 연구 (The Role and Effect of Artificial Intelligence (AI) on the Platform Service Innovation: The Case Study of Kakao in Korea)

  • 이경주;김은영
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.175-195
    • /
    • 2020
  • The development of platform service based on the information and communication technology has revolutionized patterns of commercial transactions, driving the growth of global economy. Furthermore, the radical advancement of artificial intelligence(AI) presents the huge potential to innovate almost all the industrial and economic activities. Given these technological developments, the goal of this paper is to investigate AI's impact on the platform service innovation as well as its influence on the business performance. For the goal, this paper presents the review of the types of service innovation, the nature of platform services, and technological characteristics of leading AI technologies, such as chatbot and recommendation system. As an empirical study, this paper performs a multiple case study of Kakao Group which is the leading mobile platform service with the most advanced AI in Korea. To understand the role and effect of AI on Kakao platform service, this study investigated three cases, including chatbot agent of Kakao Bank, Smart Call service of Kakao Taxi, and music recommendation system of Kakao Mellon. The analysis results of the case study show that AI initiated innovations in platform service concepts, service delivery, and customer interface, all of which lead to a significant decrease in the transaction costs and the personalization of services. Finally, for the successful development of AI, this research emphasizes the significance of the accumulation of customer and operational data, the AI human capital, and the design of R&D organization.

개선된 k-means 알고리즘을 적용한 사용자 특성 선호도 추천 시스템 (User's Individuality Preference Recommendation System using Improved k-means Algorithm)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권8호
    • /
    • pp.141-148
    • /
    • 2010
  • 모바일 단말기에서 사용자의 상황을 고려하고 사용자의 취향이나 특성을 반영하여 정보를 찾아주거나 추천하는 서비스 시스템은 개념적인 정보만을 제한적으로 추천한다. 또한 사용자의 특성에 따른 정보 선호도를 제공하지 않으므로 정확한 정보 추천의 어려운 단점이 있다. 따라서 본 논문에서는 사용자 특성에 따른 선호도를 고려하여 정확한 상황 정보를 추천 할 수 있는 개선된 k-means 알고리즘을 적용하여 사용자 특성에 따른 선호도 추천 시스템을 제안하였다. 본 연구에서는 사용자 특성에 따른 선호도를 상관 계수를 이용하여 구하고 사용자의 특성 선호도를 개선된 k-means 알고리즘을 이용하여 추천하였다. 제한적인 개념의 정보만을 제공하던 시스템에서 사용자의 특성에 따른 정보 선호도를 제공하여 정확한 정보를 추천하므로 제한된 정보 추천의 단점을 해결하였다. 성능 실험은 기존의 서비스 시스템들과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 85%, 재현율은 68%로 나타났다.

복합지식 기반 개인 맞춤형 지능화 추천시스템 (Customizing Intelligent Recommendation System based on Compound Knowledge)

  • 김귀정;김봉한;한정수
    • 한국콘텐츠학회논문지
    • /
    • 제10권8호
    • /
    • pp.26-31
    • /
    • 2010
  • 본 연구는 작업현장, 교육현장, 기타 시공간에서 작업자의 현재 상황이나 담당업무 맥락에 따라 개인의 숙련도나 학습 진도에 맞추어 비공식학습과 공식학습 모두 실시간으로 발생할 수 있는 개인 추천 서비스 구현을 목표로 한다. 이에 복합지식을 기반으로 실시간으로 코칭과 조언을 들을 수 있으며, 다차원적인 관계를 쉽게 검색하고 추천할 수 있는 개인 맞춤형 복합지식 지능화 추천 시스템을 설계하였다. 이를 위해, 복합지식 저장소와 복합지식관리 모듈을 개발하였다. 특정 산업분야에서는 장기적으로 축척되는 지식베이스를 근간으로 하여 전문적인 문제해결 혹은 코칭 서비스 등을 부가적으로 창출할 것으로 기대된다.