• Title/Summary/Keyword: recommendation service system

Search Result 372, Processing Time 0.034 seconds

Context-Aware Active Services in Ubiquitous Computing Environments

  • Moon, Ae-Kyung;Kim, Hyoung-Sun;Kim, Hyun;Lee, Soo-Won
    • ETRI Journal
    • /
    • 제29권2호
    • /
    • pp.169-178
    • /
    • 2007
  • With the advent of ubiquitous computing environments, it has become increasingly important for applications to take full advantage of contextual information, such as the user's location, to offer greater services to the user without any explicit requests. In this paper, we propose context-aware active services based on context-aware middleware for URC systems (CAMUS). The CAMUS is a middleware that provides context-aware applications with a development and execution methodology. Accordingly, the applications based on CAMUS respond in a timely fashion to contextual information. This paper presents the system architecture of CAMUS and illustrates the content recommendation and control service agents with the properties, operations, and tasks for context-aware active services. To evaluate CAMUS, we apply the proposed active services to a TV application domain. We implement and experiment with a TV content recommendation service agent, a control service agent, and TV tasks based on CAMUS. The implemented content recommendation service agent divides the user's preferences into common and specific models to apply other recommendations and applications easily, including the TV content recommendations.

  • PDF

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

빅데이터 기반 소비자 유형별 농식품 추천시스템 구축 사례 (Case Study of Big Data-Based Agri-food Recommendation System According to Types of Customers)

  • 문정훈;장익훈;최영찬;김진교;박진
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.903-913
    • /
    • 2015
  • 농림수산식품교육문화정보원에서는 2015년 1월부터 공공데이터 포털 서비스를 시작하였으며 포털 내에 구축된 빅데이터 기반 농식품 추천 시스템을 이용한 맞춤소비정보를 제공하고 있다. 추천시스템의 특징은 첫째, SNS오피니언마이닝, 소비자패널의 모든 구매내역 정보, 기후데이터, 도매가격 데이터와 같은 빅데이터의 성격을 가진 농식품분야의 다양한 데이터들을 이용하기 때문에 데이터 양의 관점에서 추천의 정확도를 높일 수 있다. 둘째, 추천시스템 구축 초기에는 사용자 정보 기반 추천이 어려운 한계를 극복할 수 있는 방법으로 식생활 라이프스타일과 메가트렌드 요인을 이용한 소비자 세분화방법을 사용한다. 이는 사용자 개인정보가 없는 상황에서도 다양한 식품 선호를 반영할 수 있도록 하여 추천실패율을 낯춘다. 셋째, 디리슐레-다항분포를 이용하는 추천 알고리즘을 적용하여 다양한 상황적 요인들의 선호가 반영된 농식품 추천이 가능하도록 하였다. 이 외에도 추천 농식품에 대한 SNS 맛집정보와 버즈량, 관련 식재료를 판매하는 주변 소매점 위치 및 가격정보 등 다양한 정보를 제공하여 농식품 분야 정보에 관심을 높일 수 있도록 시스템을 구현하였다.

스마트폰 기반 사용자 정보추천 시스템 개발 (Personalized Information Recommendation System on Smartphone)

  • 김진아;권응주;강상길
    • 정보화연구
    • /
    • 제9권1호
    • /
    • pp.57-66
    • /
    • 2012
  • 최근 모바일 콘텐츠 시장이 급속도로 성장하면서 다양한 모바일 기반의 애플리케이션들이 출시되고 있다. 하지만 모바일 기기들은 일반 컴퓨터와 비교하였을 때 화면의 크기 및 입력 방법 등과 같은 제약으로 최종 이용하고자 하는 콘텐츠까지 도달하는데 많은 노력과 시간이 소요된다. 이러한 불편함을 해결하기 위해서는 사용자가 선호할 만한 정보를 예측하고 필터링 되어진 맞춤형 정보를 제공 하는 추천시스템이 필요하다. 본 연구에서는 스마트폰 기반의 사용자 정보추천 시스템을 제안한다. 정보의 필터링은 사용자 기반 협업 필터링을 이용하여 개인이 선호할 것이라 판단되는 정보를 예측하고 추천하였다. 이때 사용자 기반 협업필터링 과정에서 사용되는 유사도는 피어슨 상관계수를 가중치로 이용한 유클리디안 거리 기법의 유사도를 사용하였다. 성능 평가를 위해 음식점 추천 시나리오를 이용하였으며 이를 통해 제안 추천 시스템의 유용성을 보였다. 실험을 통하여 본 연구의 추천 서비스의 유용성을 검증하였다.

유비쿼터스 환경에서 상황 인지 정보를 이용한 적응형 추천 서비스 기법 (An Adaptive Recommendation Service Scheme Using Context-Aware Information in Ubiquitous Environment)

  • 최정환;류상현;장현수;엄영익
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.185-193
    • /
    • 2010
  • 최근 유비쿼터스 시대의 도래와 함께 개인화된 서비스를 제공하기 위한 다양한 서비스 모델들이 제안되어 왔으며, 특히, 사용자에게 개인화된 서비스를 선응적으로 제공하기 위한 다양한 추천 서비스 기법들이 고안되었다. 그러나, 기존의 기법들은 수 많은 데이터를 여과 과정 없이 분석함으로써 추천의 효율성이 떨어지며, 한정된 상황 인지 정보만용 추천 요소로 고려하기 때문에 사용자에게 개인화된 서비스를 제공하기에 적합하지 않다. 본 논문에서는 유비쿼터스 환경에서 사용자의 현재 상황에 가장 적합한 서비스를 제공하는 적응형 추천 서비스 기법을 제안한다. 본 기법은 사용자의 선호도 예측을 위해 누적된 사용자와 장치 간의 상호작용 상황 정보들을 이용하며, 군집 및 협업 필터링 기법을 이용하여 사용자에게 현재 상황에 적응적인 서비스를 추천한다. 군집 기법을 통해 사용자의 현재 위치에 근접한 데이터만을 분석함으로써, 추천의 효율성을 높이며, 협업 필터링을 이용하여 누적된 정보들이 충분하지 않은 상황에서도 정확한 추천을 보장한다. 끝으로, 시뮬레이션을 통해 본 기법의 성능 및 신뢰성을 평가한다.

Assessing Personalized Recommendation Services Using Expectancy Disconfirmation Theory

  • Il Young Choi;Hyun Sil Moon;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • 제29권2호
    • /
    • pp.203-216
    • /
    • 2019
  • There is an accuracy-diversity dilemma with personalized recommendation services. Some researchers believe that accurate recommendations might reinforce customer satisfaction. However, others claim that highly accurate recommendations and customer satisfaction are not always correlated. Thus, this study attempts to establish the causal factors that determine customer satisfaction with personalized recommendation services to reconcile these incompatible views. This paper employs statistical analyses of simulation to investigate an accuracy-diversity dilemma with personalized recommendation services. To this end, we develop a personalized recommendation system and measured accuracy, diversity, and customer satisfaction using a simulation method. The results show that accurate recommendations positively affected customer satisfaction, whereas diverse recommendations negatively affected customer satisfaction. Also, customer satisfaction was associated with the recommendation product size when neighborhood size was optimal in accuracy. Thus, these results offer insights into personalizing recommendation service providers. The providers must identify customers' preferences correctly and suggest more accurate recommendations. Furthermore, accuracy is not always improved as the number of product recommendation increases. Accordingly, providers must propose adequate number of product recommendation.

암묵적 피드백 기반 반려동물 용품 추천 시스템 (Pet Shop Recommendation System based on Implicit Feedback)

  • 최희열;강윤희;강명주
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1561-1566
    • /
    • 2017
  • 기계 학습과 인공 지능 기술의 발전으로 다양한 응용분야들이 가능해지고 있고, 이중에 추천 시스템은 이미 여러 업체들에서 영화 추천이나 상품 추천 등의 서비스에 적용하여 효과를 보고 있다. 이러한 서비스 중인 추천 시스템들의 대부분은 아이템의 내용을 분석하여 추천하거나 아니면 평점과 같은 직접적인 피드백에 기반하여 시스템을 학습하고 추천하고 있다. 하지만 많은 온라인 쇼핑몰 중에는 아이템의 내용을 분석하는 것이 어렵고, 직접적인 피드백 정보가 없거나 혹은 거의 없어 추천 시스템 구축이 어려운 경우가 많다. 이러한 경우에도 사용자의 상품 조회에 관한 로그 기록들은 어렵지 않게 확보할 수 있고, 로그 기록들만 가지고도 추천 서비스를 제공할 수 있다면 서비스의 질을 향상할 수 있을 것으로 기대된다. 본 논문에서는 사용자의 로그 기록으로부터 암묵적인 피드백인 상품 조회 정보를 추출하고, 암묵적인 피드백에 기반한 추천 시스템을 구현하고, 제안된 시스템은 온라인 반려동물 용품점에 적용하여 확인한다. 즉, 사용자들의 상품조회를 위한 클릭정보만을 활용하여 반려동물 용품 추천 시스템을 구축하여 서비스로 확인한다.

의류상품의 온라인 대량고객화 제품추천 서비스에 대한 소비자의 감정적, 인지적 반응 (Product Recommendation Service in Online Mass Customization: Consumers' Cognitive and Affective Responses)

  • 문희강;이현화
    • 한국의류학회지
    • /
    • 제36권11호
    • /
    • pp.1222-1236
    • /
    • 2012
  • This study examined the effects of product recommendation services as an atmosphere for online mass customization shopping sites on consumers' cognitive and affective responses. We conducted a between-subject experimental study using a convenience sample of college students. A total of 196 participants provided usable responses for structural equation modeling analysis. The findings of the study support the S-O-R model for a product recommendation system as an element of the shopping environment with an influence on OMC product evaluations and arousal. The results showed that OMC product recommendation service positively affected cognitive and affective responses. The findings of the study suggest that OMC retailers might pay attention to the affective and cognitive responses of consumers through product recommendation services that can enhance product evaluations and OMC usage intentions.

사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발 (Development of User Based Recommender System using Social Network for u-Healthcare)

  • 김혜경;최일영;하기목;김재경
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.181-199
    • /
    • 2010
  • 인구의 고령화 및 건강에 대한 관심이 증가됨에 따라 유헬스케어 서비스는 발병 후 관리관점에서 발병 전의 예방 관점으로 그 목적이 점차 이동하고 있다. 그러나 기존의 유헬스케어 서비스는 원격진료 차원의 의료 서비스 성격이 강하여, 만성 성인병과 같은 대사 증후군을 예방 및 관리하기에는 한계가 있을 뿐만 아니라, 관리자 중심의 단방향 서비스를 제공함으로 인해 사용들이 중도에 이용을 포기하는 비율이 높았다. 이와 같은 문제를 해결하기 위하여, 본 연구에서는 사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템을 제안하였으며, 실세계에서 유헬스케어 서비스 추천 시스템의 활용 가능성을 제시하기 위하여 실제 의료원에서 대사 증후군 예방 및 관리를 위해 처방한 식단 및 운동 정보를 기반으로 유비쿼터스 컴퓨팅 환경에서 적용가능한 시스템을 구현하였다. 본 연구에서 제안한 시스템은 사용자가 선호하지 않는 서비스가 네트워크를 통해 확산될 가능성을 낮추는 동시에 추천의 신뢰성 제고를 위해 네이버들이 이용한 서비스를 공유함으로써 전체적인 추천 품질을 높인다. 즉, 사용자의 식습관 및 운동습관 등과 같은 생활습관을 개선하기 위하여 사회 네트워크를 활용함으로써 사용자간의 자율협업을 통한 개인화된 추천이 가능하다. 따라서 본 연구에서 제안하는 유헬스케어 서비스 추천 시스템은 생활습관 개선을 위하여 사용자에게 적합한 식단 및 운동을 제공하고, 생활습관의 개선을 통해 만성 성인병과 같은 대사증후군을 사전에 예방할 수 있을 것으로 기대된다.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.