• Title/Summary/Keyword: recombinant protein vaccine

Search Result 128, Processing Time 0.024 seconds

Production of the polyclonal subunit C protein antibody against Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Lee, Su-Jeong;Park, So-Young;Ko, Sun-Young;Ryu, So-Hyun;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.335-342
    • /
    • 2008
  • Purpose: Cytolethal distending toxin (CDT) considered as a key factor of localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis is composed of five open reading frames (ORFs). Among of them, the individual role of CdtA and CdtC is not clear; several reports presents that CDT is an AB2 toxin and they enters the host cell via clathrin-coated pits or through the interaction with GM3 ganglioside. So, CdtA, CdtC, or both seem to be required for the delivery of the CdtB protein into the host cell. Moreover, recombinant CDT was suggested as good vaccine material and antibody against CDT can be used for neutralization or for a detection kit. Materials and Methods: We constructed the pET28a-cdtC plasmid from Aggregatibacter actinomycetemcomitans Y4 by genomic DNA PCR and expressed in BL21 (DE3) Escherichia coli system. We obtained the antibody against the recombinant CdtC in mice system. Using the anti-CdtC antibody, we test the native CdtC detection by ELISA and Western Blotting and confirm the expression time of native CdtC protein during the growth phase of A. actinomycetemcomitans. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and generated the anti CdtC antibody against recombinant CdtC subunit expressed in E. coli system. Our anti CdtC antibody can be interacting with recombinant CdtC and native CDT in ELISA and Western system. Also, CDT holotoxin existed at 24h but not at 48h meaning that CDT holotoxin was assembled at specific time during the bacterial growth. Conclusion: In conclusion, we thought that our anti CdtC antibody could be used mucosal adjuvant or detection kit development, because it could interact with native CDT holotoxin.

Sequencing and Baculovirus-Based Expression of the Glycoprotein B2 Gene of HSV-2 (G)

  • Uh, Hong-Sun;Park, Jong-Kuk;Kang, Hyun;Kim, Soo-Young;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.482-490
    • /
    • 2001
  • The gene for glycoprotein B (gB2) of HSV-2-strain G was subcloned, sequenced, recombinated into the lacZ-HcNPV, expressed in insect cells, and compared with the homologous gene of other HSV-2 strains. The ORF of the gB2 gene was 2,715 bp. The overall nucleotide sequence homology of te gB2 gene compared ith that of the two previously reported HSV-2 strains appeared to be over 98%. A recombinant virus named Baculo-gB2 protein in insect cells. The recombination was confirmed by a PCR and the expression was demonstrated by radio immunoprecipitation. Insect cells infected with the Baculo-gB2 virus synthesized and processed gB2 with approximately 120 kDa in the cells, and then secreted it into the culture media, where it reacted with a nomoclonal antibody to gB2. The gB2 polypeptide contained two main hydrophobic regions (a signal sequence from 1 to 23 amino acid residues, and a membrane anchor sequence from aa 745 to 798), eight N-glycosylation sites evenly distributed, and was rich in alanine (11.2%). Antibodies to this recombinant protein that were raised in mice recognized the viral gB2 and neutralized the infectivity of the HSV-2 in vitro. There results show that the gB2 protein was successfully porduced in insect cells and could be used to raise a protective neutralizing antibody. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Validation and optimization of the in vitro LAL test for detection of endotoxin in hepatitis B vaccines

  • Park, Chul-Yong;Jung, Seung-Ha;Bak, Jong-Phil;Lee, Sun-Suk;Rhee, Dong-Kwon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.162.1-162.1
    • /
    • 2003
  • Endotoxin has been detected by the Limulus amoebocyte lysate (LAL) test. However, aluminum hydroxide used as an adjuvant and adsorbent for the recombinant protein antigen is known to increase efficacy of lipopolysaccharide vaccine in vivo thus interfering endotoxin test. The aim of this study is to determine effect of aluminum hydroxide on the LAL test using the hepatitis B vaccine as a model and to optimize the LAL test condition not to be interfered by aluminum gydroxide. (omitted)

  • PDF

Monoclonal antibodies against porcine group C rotavirus VP6 (돼지 group C 로타바이러스 VP6 특이 단클론항체)

  • Yoon, Young-Sim;Lee, Seung-Chul;Woo, Sang-Kyu;Cho, Kyoung-Oh;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2012
  • Rotaviruses have been known to be a major etiological agent of gastroenteritis in both infants and young animals. Subsequently new rotaviruses, which were morphologically indistinguishable but antigenically and electrophoretically distinct with each other, were reported from several animals throughout world including Korea. These new rotaviruses were named as non-group A or group B or group C rotaviruses and so on. It has been very difficult to isolate and grow the non-group A rotaviruses in vitro, and this has greatly limited the characterizations of non-group A rotaviruses and serological studies. In this study, monoclonal antibodies (MAbs) against porcine non-group A rotavirus were produced and characterized. The VP6 gene of porcine group C rotavirus Korean isolate(#06-52-1) was cloned and expressed. For expression of VP6 gene, baculovirus expression system was applied. The VP6 gene and expressed protein in the recombinant virus were confirmed by polymerase chain reaction (PCR), indirect fluorescence antibody (IFA) test and Western blot, respectively. The expressed VP6 was used for MAbs production. The MAbs produced in this study would be promising as diagnostic reagents for detection of group C rotavirus infection.

Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data

  • Kim, Duk Kyung;Won, Kyeong Hye;Moon, Seung Hyun;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1044-1051
    • /
    • 2016
  • The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to "Response to stimulus", no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions.

Protection against spring viremia carp virus (SVCV) by immunization with chimeric snakehead rhabdovirus expressing SVCV G protein

  • Mariem Bessaid;Kyung Min Lee;Jae Young Kim;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Spring viremia of carp virus (SVCV) poses a significant threat to numerous cyprinid fish species, particularly the common carp (Cyprinus carpio), often resulting in substantial mortalities. This study explores the potential use of a chimeric recombinant snakehead rhabdovirus carrying the SVCV G gene (rSHRV-Gsvcv) as a live vaccine against SVCV infection. Through virulence testing in zebrafish at different temperatures (15 ℃ and 20 ℃), no mortality was observed in groups infected with either rSHRV-wild or chimeric rSHRV-Gsvcv at both temperatures, whereas 100% mortality occurred in fish infected with wild-type SVCV. Subsequently, as no mortality was observed by rSHRV-Gsvcv, three independent experiments were conducted to determine the possible usage of chimeric rSHRV-Gsvcv as a vaccine candidate against SVCV infection. Fish were immunized with either rSHRV-Gsvcv or rSHRV-wild, and their survival rates against the SVCV challenge were compared with a control group injected with buffer alone at four weeks post-immunization. The results showed that chimeric rSHRV-Gsvcv induced significantly higher fish survival rates compared to rSHRV-wild and the control groups. These findings suggest that genetically engineered chimeric rSHRV-Gsvcv holds the potential for a prophylactic measure to protect fish against SVCV infection.

Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

  • Xu, Jinjun;Zhang, Yan;Tao, Jianping
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.147-154
    • /
    • 2013
  • To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and $100{\mu}g/chick$). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with $5{\times}10^4$ sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control.

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

Comparison of Immune Responses to the PCV2 Replicase-Capsid and Capsid Virus-Like Particle Vaccines in Mice

  • Jung, Bo-Kyoung;Kim, Hye-Ran;Lee, Young-Hyeon;Jang, Hyun;Chang, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.482-488
    • /
    • 2019
  • Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. Replicase (Rep) proteins are considered essential for viral replication. Capsid (Cap) protein is the primary immunogenic protein that induces protective immunity. Little is known about comparison on the immunogenicity of PCV2 Rep and Cap fusion protein and Cap protein. In the present study, recombinant baculoviruses expressing the Rep-Cap fusion protein (Bac-Rep-Cap) and the Cap protein (Bac-Cap) of PCV2 were constructed and confirmed with western blot and indirect fluorescence assay. Immunogenicities of the two recombinant proteins were tested in mice. The titers of antibodies were determined with a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The $IFN-{\gamma}$ response of immunized mice was measured by ELISA. The mice immunized with the Bac-Rep-Cap and Bac-Cap successfully produced Cap-specific immunoreaction. The mice immunized with the Bac-Cap developed higher PCV2-specific neutralizing antibody titers than mice injected with the Bac-Rep-Cap. $IFN-{\gamma}$ in the Bac-Rep-Cap group was increased compared to those in the Bac-Cap group. Vaccination of mice with the Bac-Rep-Cap showed significantly decreased protective efficacy compared to the Bac-Cap. Our findings will indubitably not only lead to a better understanding of the immunogenicity of PCV2, but also improved vaccines.

Secretory Expression and Purification of the Recombinant Duck Interleukin-2 in Pichia pastoris

  • Du, Cuihong;Han, Long;Xiao, Anfeng;Cao, Minjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1264-1269
    • /
    • 2011
  • Interleukin-2 (IL-2) is a vital cytokine secreted by activated T lymphocytes, and plays an important role in the regulation of cellular functions and immunity of animals. In this study, the recombinant duck IL-2 (rduIL-2) was secretory expressed in Pichia pastoris (P. pastoris). The recombinant P. pastoris strain was cultured in shake flasks and then scaled up in a 5.0-l bioreactor. The result showed that the maximal fresh-cell-weight of 594.1 g/l and the maximal $OD_{600}$ of 408 were achieved in the bioreactor. The rduIL-2 was purified by two steps of purification procedures, and approximately 311 mg of rduIL-2/L fermentation supernatant was obtained. SDS-PAGE showed that the purified rduIL-2 constituted a homogeneous band of ~16 kDa or ~14 kDa corresponding to the glycosylated or non-glycosylated duIL-2 protein in size, respectively. The bioactivity of rduIL-2 was determined by lymphocyte proliferation assay. The result indicated that the rduIL-2 greatly promoted the proliferation of ConA-stimulated lymphocytes in vitro. The P. pastoris expression system described here could provide promising, inexpensive, and large-scale production of the rduIL-2, which lays the foundation for development of novel immunoadjuvants to enhance both the immunity of ducks against various infectious pathogens and vaccine efficacy.