• Title/Summary/Keyword: recombinant coat protein

Search Result 25, Processing Time 0.025 seconds

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

Production and Evaluation of Monoclonal Antibodies Against Recombinant Coat Protein of Lily mottle virus for Western Blotting and Immono-blot Analysis

  • Chung, Bong-Nam;Yoon, Ju-Yeon;Choi, Gug-Sun
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • Lily mottle virus (LMoV) causes flower quality reduction in Lilium spp. The coat protein gene was RT-PCR-amplified from total RNA extracted from infected lily leaves and the amplified fragment was cloned into the pRSET expression vector tagged with a His-MBP. The plasmid of recombinant coat protein was used to transform an Escherichia coli strain pLysS and was expressed. The coat protein was purified by affinity chromatography using a Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE. The in vitro-expressed protein was used for immunization of mice. The polyclonal and monoclonal antibodies reacted specifically for the detection of LMoV in lily extracts in Western blot. Moreover the monoclonal antibodies reacted with lily extracts in DAS-ELISA with no unspecific or heterologous reactions against other non-serologically related viruses, but the polyclonal antibodies revealed a weak reaction against both infected lily and healthy control.

Development of a Recombinant Protein Vaccine Based on Cell-Free Protein Synthesis for Sevenband Grouper Epinephelus septemfasciatus Against Viral Nervous Necrosis

  • Kim, Jong-Oh;Kim, Jae-Ok;Kim, Wi-Sik;Oh, Myung-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1761-1767
    • /
    • 2015
  • Sevenband grouper, Epinephelus septemfasciatus, is becoming an important aquaculture species in Korea. However, viral nervous necrosis disease is a large problem causing mass mortality in sevenband grouper aquaculture. Recombinant protein vaccines are one of the best methods to reduce these economic losses. However, the cell-based expression method mainly produces inclusion bodies and requires additional procedures. In this study, we expressed a recombinant viral coat protein of sevenband grouper nervous necrosis virus (NNV) using a cell-free protein synthesis system. The purified recombinant NNV coat protein (rNNV-CP) was injected into sevenband grouper at different doses followed by a NNV challenge. Nonimmunized fish in the first trial (20 μg/fish) began to die 5 days post-challenge and reached 70% cumulative mortality. In contrast, immunized fish also starting dying 5 days postchallenge but lower cumulative mortality (10%) was observed. Cumulative morality in the second trial with different doses (20, 4, and 0.8 μg/fish) was 10%, 40%, and 50%, respectively. These results suggest that rNNV-CP can effectively immunize sevenband grouper depending on the dose administered. This study provides a new approach to develop a recombinant vaccine against NNV infection for sevenband grouper.

Construction of ELISA System for the Detection of Indian citrus ringspot virus (Indian citrus ringspot virus의 ELISA 진단 시스템 구축)

  • Shin, Myeung-Ju;Kwon, Young-Chul;Ro, Hyeon-Su;Lee, Hyun-Sook
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.231-235
    • /
    • 2012
  • Indian citrus ring spot virus (ICRSV) is known to cause a serious disease to citrus, especially to Kinnow mandarin, the popular cultivated citrus species in India. In this study, we developed diagnostic systems based on enzyme-linked immunosorbent assay (ELISA). In order to generate antibodies against ICRSV coat protein, we overexpressed the coat protein in Escherichia coli using the pET15b expression vector containing an optimized ICRSV coat protein gene. The recombinant ICRSV coat protein was overexpressed as soluble form at $37^{\circ}C$ upon IPTG induction. The protein was purified to 95% in purity by Ni-NTA column chromatography. The purified protein was immunized to rabbit for the generation of polyclonal antibody (PAb). The PAb showed a specific immunoreaction to recombinant ICRSV coat protein in western blot analysis and ELISA. Diluted rabbit antisera (10,000 fold) could detect less than 10 ng and 5 ng of the target protein in western blot and ELISA analysis, respectively.

Expression of Lily mottle virus Coat Protein and Preparation of IgY Antibody against the Recombinant Coat Protein

  • Yoo, Ha Na;Jung, Yong-Tae
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.544-549
    • /
    • 2014
  • Lily symptomless virus (LSV), Lily mottle virus (LMoV), and Cucumber mosaic virus (CMV) are the most prevalent viruses infecting lilies in Korea. Leaf and bulb samples showing characteristic symptoms of virus infection were collected in 2012, and 80 field samples were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The infection frequencies were 79% for LMoV, 5% for LSV, and 3% for CMV. The LMoV coat protein gene was amplified and cloned into the pET21d(+) expression vector to develop serological diagnostic tools to detect LMoV. The resulting carboxy-terminal His-tagged coat proteins were expressed in Escherichia coli strain BL21 (DE3) by induction with IPTG. The recombinant proteins were purified using Ni-NTA agarose beads and used as an antigen to produce polyclonal antibodies in laying hens. The resulting egg yolk immunoglobulin (IgY) specifically recognized LMoV from infected plant tissues in immunoblotting assays and had comparable sensitivity to that of a mammalian antibody. In addition, method of immunocapture RT-PCR using this IgY was developed for sensitive, efficient, and rapid detection of LMoV. Based on these results, large-scale bulb tests and detection of LMoV in epidemiological studies can be performed routinely using this IgY. This is the first report of production of a polyclonal IgY against a plant virus and its use for diagnosis.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Development of an Indirect ELISA and Immunocapture RT-PCR for Lily Virus Detection

  • Kim, Jin Ha;Yoo, Ha Na;Bae, Eun Hye;Jung, Yong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1776-1781
    • /
    • 2012
  • Multiple viruses such as Lily symptomless virus (LSV), Lily mottle virus (LMoV), and cucumber mosaic virus (CMV) are the most prevalent viruses infecting lilies in Korea. Leaf samples and bulbs showing characteristic symptoms of virus infection were collected from Gangwon, Chungnam, and Jeju provinces of Korea in 2008-2011. Coat protein (CP) genes of LSV and LMoV were amplified from collected samples by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into a pET21d(+) expression vector to generate recombinant CPs. The resulting carboxy-terminal His-tagged CPs were expressed in Escherichia coli strain BL21(DE3) by isopropyl-1-thio-${\beta}$-D-galactoside induction. The recombinant proteins were purified using Ni-NTA agarose beads, and the purified proteins were used as an immunogen to produce polyclonal antibodies in rabbits. The resulting polyclonal antisera recognized specifically LSV and LMoV from infected plant tissues in Western blotting assays. Indirect enzymelinked immunosorbent assay and immunocapture RT-PCR using these polyclonal antisera were developed for the sensitive, efficient, economic, and rapid detection of Lily viruses. These results suggest that large-scale bulb tests and economic detection of Lily viruses in epidemiological studies can be performed routinely using these polyclonal antisera.

Complementary DNA Cloning and Restriction Mapping of Nuclear Inclusion Body and Coat Protein Genes of Turnip Mosaic Virus-Ca Strain Genomic RNA (순무모자이크 바이러스 Ca계통 핵봉입체와 외피단백질 유전자의 cDNA 클로닝 및 제한효소 지도작성)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.235-239
    • /
    • 1994
  • Viral RNA was extracted from purified Chinese cabbage strain of turnip mosaic virus (TuMV-Ca) from infected leaves of turnip. Polyadenylated genomic viral RNA was recovered by oligo (dT) cellulose column chromatography and used as a template for the synthesis of complementary DNA (cDNA). Recombinant plasmids contained cDNA ranged from about 900 bp to 2, 450 bp were synthesized. Among the selected 41 transformants, pTUCA31 and pTUCA35 had over 2 Kbp cDNA insert. Restriction endonuclease patterns of the clones examined were very similar among them. Clones pTUCA23 and pTUCA31 were overlapped with pTUA35. The longest clone pTUCA35, encoding 3'-end, showed that it contained two sites for EcoRI, and one site for BamHI, ClaI, HincII, SacI and XbaI, respectively. The restriction mapping indicated that the clone pTUCA35 contained partial nuclear inclusion body gene, complete coding region of the coat protein and 3' untranslated region of TuMV-Ca genomic RNA.

  • PDF