• Title/Summary/Keyword: recombinant S. cerevisiae

Search Result 114, Processing Time 0.026 seconds

Continuous Production of Fructose-Syrups from Inulin by Immobilized Inulinase from Recombinant Saccharomyces cerevisiae

  • Kim, Byung-Woo;Kim, Han-Woo;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 1997
  • Recombinant exoinulinase was partially purified form the culture supernatant of S.cerevisiae by(NH4)2SO4 precipitation and PEG treatment. The purfied inulinase was immobilized onto Amino-cellulofine with glutaraldeyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 6$0^{\circ}C$, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 6$0^{\circ}C$. 100% of enzyme activity was observed even after incubation for 24 hr at 6$0^{\circ}C$. In the operation of a packed-bed reactor containing 412U inulinase, dahalia inulin of 7.5%(w/w) concentration was completely hydrolyzed at flow rate of 2.0mL/min at 6$0^{\circ}C$, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0mL/min flow rate with 2.5% inulin at 6$0^{\circ}C$, the reactor was successfully operated over 30 days without loss ofinulinase activity.

  • PDF

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae

  • Cha Kwang Hyun;Kim Myoung Dong;Lee Tae Hee;Lim Hyung Kweon;Jung Kyung Hwan;Seo Jin Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.523-527
    • /
    • 2004
  • Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.

Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae

  • Rezaee Mohammad Ahangarzadeh;Rezaee Abbas;Moazzeni Seyed Mohammad;Salmanian Ali Hatef;Yasuda Yoko;Tochikubo Kunio;Pirayeh Shahin Najar;Arzanlou Mohsen
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately $1.9\%$ of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.

Cotransformation of Saccharomyces cerevisiae with Yip and Yep Vectors (YEp 및 YIp 벡터에 의(依)한 Saccharomyces cerevisiae의 Cotransformation)

  • Lee, Sung Bum;Rhee, In Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.36-41
    • /
    • 1986
  • The transformation of Saccharomyces cerevisiae with YIp26, YRp7 and YEp13 was investigated. Transformation frequences of YIp5, YIp26, YRp7 and YEp13 in Escherichia coli HB101 was $5.1{\times}10^{-4}$, $1.5 {\times}10^{-3}$, $1.3{\times}10^{-3}$, $3{\times}10^{-3}$, respectively. When plasmids were used in covalently closed circular form, transformation frequency of YEp13 was $1.2{\times}10^{-4}$ in S. cerevisiae DBY747 and $3.3{\times}10^{-4}$ in S. cerevisiae MC16 and that of YRp7, YIp26 was $3{\times}10^{-6}$, below $6{\times}10^{-8}$ respectively in S. cerevisiae DBY747 by the method of Ito. Cotransformation of YIp26 and YEp13 in linear form increased the frequency of transformation with efficiences 270-fold higher than transformation of YIp26 only in S. cerevisiae DBY747. In cotransformation of YIp5+YEp13 and YIp26+YRp7 with S. cerevisiae DBY747 by Beggs' method. Expression frequency of YIp5+YEp13 and YIp26+YRp7 was $4{\times}10^{-6}$, $1.5{\times}10^{-6}$, respectively. The recombinant plasmid of cotransformant was thought that YIp26 and YEp13, YIp5 and YEp13, and YIp26 and YRp 7 were ligated in vivo in S. cerevisiae DBY747.

  • PDF

Growth and Cadmium Removal in Recombinant Saccharomyces cerevisiae Harboring A Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 카드뮴 제거)

  • 김대옥;박성식서진호
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.543-549
    • /
    • 1996
  • Recombinant Saccharomyces cerevisiae BZ-pJ containing the gene coding for metallothionein, a metalbinding protein was grown in the medium with high cadmium concentrations to study the characteristics of growth and cadmium uptake. High concentrations of cadmium reduced cell growth and final cell density and increased the lag phase periods of the recombinant yeast. Addition of 10 mg $Cd^{2+}$/L to the growth medium remarkably decreased a lag period and enhanced the specific cadmium uptake to 52.6 mg $Cd^{2+}$/g dry cell. The effect of copper addition was further investigated in the medium of 680 mg Cd2+/L. An increase in copper concentration from 11.0 to 33.3 mg/L enhanced the specific cadmium uptake from 17.0 to 42.0 mg Cd2+/g dry cell.

  • PDF

Hormonal Effects of Several Chemicals in Recombinant Yeast, MCF-7 Cells and Uterotrophic Assays in Mice

  • Park, Jin-Sung;Lee, Beom-Jun;Kang, Kyung-Sun;Tai, Joo-Ho;Cho, Jae-Jin;Cho, Myung-Haing;Inoue, Tohru;Lee, Yong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2000
  • Many methods have been developed for screening chemicals with hormonal activity. Using recombinant yeasts expressing either human estrogen receptor [Saccharomyces cerevisiae ER + LYS 8127 (YER)] or androgen receptor [S. cerevisiae AR + 8320 (YAR)], we evaluated the hormonal activities of several chemicals by induction of ${\beta}-galactosidase$ activity. The chemicals were $17{\beta}-estradiol$ (E2), testosterone (T), ${\rho}-nonylphenol$ (NP), bisphenol A (BPA), genistein (GEN), 2-bromopropane (2-BP), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and butylparaben (BP). To assess the estrogenicity of NP, the result of the in vitro recombinant yeast assay was compared with an E-screen assay using MCF-7 human breast cancer cells and an uterotrophid assay using ovariectomized mice. In the YER yeast cells, E2, NP, BPA, GEN, and BP exhibited estrogenicity in a doseresponse manner, while TCDD did not. All the chemicals tested, except T, did not show androgenicity in the YAR yeast cell. The sensitivity of the yeast (YER) assay system to the estrogenic effect of NP was similar to that of the E-screen assay. NP was also estrogenic in the uterotrophic assay. However, in terms of convenience and costs, the yeast assay was superior to the E-screen assay or uterotrophic assay. These results suggest that the recombinant yeast assay can be used as a rapid tool for detecting chemicals with hormonal activities.

  • PDF

Production of Cyclofructan by Cycloinulooligosaccharide Fructanotransferase Expressed in Saccharomyces cerevisiae. (Saccharomyces cerevisiae에서 발현된 Cycloinulooligosaccharide Fructanotransferase을 이용한 Cyclofructan의 생산)

  • 임채권;김현철;김광현;김병우;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.60-66
    • /
    • 2004
  • The cycloinulooligosaccharide fructanotransferase(CFTase) gene (cft) from Paenibacillus polymyxa was subcloned into the E. coli-yeast shuttle vector, pYES2.0 (GALI promoter). The constructed plasmid, pYGCFT (9.9 kb) was introduced into S. cerevisiae SEY2102 cell and then the yeast transformant was selected on the synthetic defined media lacking uracil Based on the cyclofructan(CF) spots on thin-layer chromatogram, the gene under the control of GALI promoter was successfully expressed in the yeast transformant. The recombinant CFTase was not secreted into the medium and was predominantly localized in the periplasmic space. CF was started to be produced after 3h of enzymatic reaction with inulin. The pH and temperature optimum for the CF production from inulin was pH 8.0 and 45$^{\circ}C$, respectively. Enzyme activity was stably maintained up to the pH of 10.0. The examination of the inulin sources revealed that a dahlia tuber and Jerusalem artichoke were the best for the production of CF.

Secretory Overexpression of Clostridium Endoglucanase A in Saccharomyces cerevisiae Using GAL10 Promoter and Exoinulinase Signal Sequeice. (Saccharomyces cerevisiae에서 GAL 10 promoter와 exoinulinase 분비 서열을 이용한 Clostridium endoglucanase A의 과발현·분비)

  • Lim, Myung-Ye;Lee, Jin-Woo;Lee, Jae-Hyung;Kim, Yeon-Hee;Seo, Jin-Ho;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1248-1254
    • /
    • 2007
  • The secretory overexpression of Clostridium thermocellum endoglucanase A gene (celA) was examined in Saccharomyces cerevisiae using Kluyveromyces marxianus exoinulinase (INU1) signal sequence and GAL10 promoter. The two plasmids, pYEG-CT1 with its own signal sequence, and pYInu-CT1 with INU1 signal sequence were introduced to S. cerevisiae SEY2102 and S. cerevisiae 2805 host strains, respectively, and then each transformant was selected on the synthetic defined media lacking uracil. The expression level and secretion efficiency of endoglucanase A was increased by $18{\sim}22%$ and 11%, respectively, by INU1 signal sequence over celA signal sequence. By considering the high level of expression (361 unit/I), plasmid stability (89%), and secretion efficiency (70%), S. cerevisiae 2805 harboring plasmid pYInu-CT1 was selected as the opti-mal host vector system for the production of cellulose-degrading enzyme and recombinant yeast probiotic. The total expression and secretion efficiency of endoglucanase A was 418 unit/l and 73%, respectively, in the batch fermentation of S. cerevisiae 2805/pYlnu-CT1 on galactose medium. The mo-lecular weight of secreted endoglucanase A was found to be greater than 100 kDa, presumably due to the N-linked glycosylation.

Cell Surface Display of Arylsulfatase Gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase 유전자의 표층 발현)

  • Cho, Eun-Soo;Kim, Hyun-Jin;Jung, So-A;Kim, Jeong-Hwan;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • In this study, the arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was expressed on the cell surface of S. cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The constructed plasmid, pCTAST (7.1 kb), was introduced to S. cerevisiae EBY100 cell, and yeast transformants on YPDG plate showed the hydrolyzing activity for 4-methylumbelliferyl-sulfate and p-nitrophenyl-sulfate. When S. cerevisiae EBY100/pCTAST was grown on YPDG medium, the arylsulfatase activity of cell pellet reached about 1.2 unit/mL, whereas no extracellular arylsulfatase activity was detected. The DNA ladder in agarose prepared from agar by this recombinant arylsulfatase showed similar resolution and migration patterns with a commercial agarose. This results revealed that arylsulfatase expressed on the cell surface of S. cerevisiae could be applicable to the economic production of electrophoretic-grade agarose.