• Title/Summary/Keyword: recombinant Escherichia coli

Search Result 860, Processing Time 0.027 seconds

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Analysis of Factors Affecting the Periplasmic Production of Recombinant Proteins in Escherichia coli

  • Mergulhao, Filipe J.;Monteiro, Gabriel A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1236-1241
    • /
    • 2007
  • Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form ${\alpha}$-helix structures are more translocated to the periplasm.

Construction of the Recombinant phbCAB Operon of Alcaligenes eutvtrphus for Accumulation of Poly-$\beta$-hydroxybu tyric Acid in Escherichia coli (Alcaligenes eutrophus phbCAB Operon의 재조합과 Poly-$\beta$-hydroxybutyric Aicd의 대장균내 축적)

  • 김경태;박진서;이용현;허태린;박해철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • In order to achieve poly-beta-hydroxybutyric acid (PHB) production using recombinant DNA in various host bacterial cells, the isolation of genes for PHB biosynthesis was attempted. As a result, a 5.2kb DNA fragment containing phbCAB operon of Alcaligenes eutrophus was isolated by colony hybridization using synthetic oligodeoxyribonucleotides as probes. The constructed recmbinant plasmid pSK(+)-phbCAB operon was transferred to Escherichia coli, and the obtained transformant accumulated considerable amount of PHB.

  • PDF

Secretion of Human Angiogenin into Periplasm and Culture Medium with Its Eukaryotic Signal Sequence by Escherichia coli

  • Jung, Woo-Jung;Choi, Suk-Jung
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.80-84
    • /
    • 1997
  • The synthesis and secretion of human angiogenin in E. coli by the natural leader sequence has been studied. We constructed a recombinant plasmid containing human angiogenin cDNA which encompassed all the coding region including leader sequence required for secretion. The recombinant plasmid was introduced into a suitable E. coli host. The angiogenin was detected in the culture medium and periplasm upon the induction of gene expression. The molecular weight of the secreted angiogenin was identical to that of authentic angiogenin purfied from human plasma when estimated by SDS-PAGE and immunoblotting. showing that the natural leader sequence was recognized and processed by the secretion machinery of E. coli. The angiogenin concentration in the culture medium reached a maximum within 2 h when expressed at $37^{\circ}C$ with 0.02~2 mM IPTG. In contrast, the expression level increased gradually over time up to 11 h at $23^{\circ}C$ with 0.002~2 mM IPTG and at $37^{\circ}C$ with 0.002 mM IPTG.

  • PDF

Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli

  • Wu, Yanyan;Ma, Yongkai;Li, Laihao;Yang, Xianqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • An antioxidant peptide derived from Pinctada fucata meat using an Alcalase2.4L enzymatic hydrolysis method (named AOP) and identified by LC-TOF-MS has promising clinical potential for generating cosmetic products that protect skin from sunshine. To date, there have been few published studies investigating the structure-activity relationship in these peptides. To prepare antioxidant peptides better and improve their stability, the design and expression of an antioxidant peptide from Pinctada fucata (named DSAOP) was studied. The peptide contains a common precursor of an expression vector containing an ${\alpha}$-helix tandemly linked according to the BamHI restriction sites. The DNA fragments encoding DSAOP were synthesized and subcloned into the expression vector pET-30a (+), and the peptide was expressed mostly as soluble protein in recombinant Escherichia coli. Meanwhile, the DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity of DSAOP $IC_{50}$ values were $0.136{\pm}0.006$, $0.625{\pm}0.025$, and $0.306{\pm}0.015mg/ml$, respectively, with 2-fold higher DPPH radical scavenging activity compared with chemosynthesized AOP (p < 0.05), as well as higher superoxide radical scavenging activity compared with natural AOP (p < 0.05). This preparation method was at the international advanced level. Furthermore, pilot-scale production results showed that DSAOP was expressed successfully in fermenter cultures, which indicated that the design strategy and expression methods would be useful for obtaining substantial amounts of stable peptides at low costs. These results showed that DSAOP produced with recombinant Escherichia coli could be useful in cosmetic skin care products, health foods, and pharmaceuticals.

Effect of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli

  • Jin, Hee-Hyun;Han, Nam-Soo;Kweon, Dae-Hyuk;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.92-96
    • /
    • 2001
  • Effect of environmental factors on the expression of soluble forms of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21(DE3)pLysE:pTCGT1 were investigated. The amount of soluble CGTase produced in the cell was measured by determining its enzymatic activity. The soluble fractionof the enzyme was increased by lowering the culture temperature to $30{\circ}C$ and medium pH to 5.8 compared to the enzyme production in LB medium at $37^{\circ}C$ and pH7.0. Addition of 0.2 M NaCl enhanced enzyme expression levels at the expense of cell growth. Glycine betaine that was added after 3 h of induction protected not only the cell growth from hig osmotic pressue but also hepld in vivo folding of CGTase in recombinant E. coli. Addition of 1 mM $CaCl_2$ was also effective in the expression of soluble CGTase, resulting in 15 U/ml of the enzyme activity.

  • PDF

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

Potential Application of the Recombinant Escherichia coli-Synthesized Heme as a Bioavailable Iron Source

  • Kwon, Oh-Hee;Kim, Su-Sie;Hahm, Dae-Hyun;Lee, Sang-Yup;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.604-609
    • /
    • 2009
  • To investigate the potential use of microbial heme as an iron source, recombinant Escherichia coli coexpressing ALA synthase (HemA) as well as the NADP-dependent malic enzyme (MaeB) and dicarboxylic acid transporter (DctA) were cultured. The typical red pigment extracted from the recombinant E. coli after 38 h showed highest absorbance at 407 nm, and the amount of iron in 38.4 mg of microbial heme extract derived from 6-1 fermentation broth was 4.1 mg. To determine the commercial potential of the recombinant E.coli-synthesized iron-associated heme as an iron source, mice were fed the iron-free provender with the microbial heme extract. The average body weight reduction of mice fed non-iron provender was 2.3%, whereas no detectable weight loss was evident in mice fed microbial heme addition after 15 days. The heme content of the blood from microbial heme fed mice was 4.2 mg/ml whereas that of controls was 2.4 mg/ml, which implies that the microbial heme could be available for use as an animal iron source.

Escherichia coli Can Produce Recombinant Chitinase in the Soil to Control the Pathogenesis by Fusarium oxysporum Without Colonization

  • Chung, Soo-Hee;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.474-480
    • /
    • 2007
  • Fusarium wilt of cucumbers was effectively controlled by Escherichia coli expressing an endochitinase gene (chiA), and the rate was as effective (60.0%) as the wild-type strain S. proteamaculans 3095 (55.0%) where the gene was cloned. However, live cells of soil inoculated E. coli host harboring the chiA gene did not proliferate but declined 100-fold from $10^8$ CFU during the first week and showed less than 10 cells after day 14, suggesting that E. coli was able to express and produce the chitinase enzyme to the soil even as the population was gradually decreasing. Because the majority of the strains was alive for only a short period of time and the Fusarium-affected seedlings showed symptoms of wilting within 7-10 days, it seems that the pathogen control was decided early after the introduction of the biocontrol agent, eliminating the survival of the antagonist. These results indicated that soil inoculated E. coli could sufficiently express and produce the recombinant protein to control the pathogen, and root or soil colonization of the antagonist might not be a significant factor in determining the efficacy of biological control.

Optimized Culture Conditions for Production of the chimaeric protein, Uropathogenic Escherichia coli Adhesin - Cholera Toxin A2B Subunits, in Escherichia coli TB1

  • Lee, Yong-Hwa;Kim, Byung-Oh;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • The FimH subunit of type 1-fimbriated Escherichia coli has been determined as a major cause for urinary tract infections. In our previous study, the Adhesin/CTXA2B was expressed as soluble recombinant chimaeric protein derived from the uropathogenic Escherichia coli adhesin genetically coupled to cholera toxin A2B (CTXA2B) subunit in Escherichia coli. Since it is very important to optimize IPTG concentration and culture temperature to maximize cell growth and productivity, These optimal culture factors were determined to increase the productivity of the expressed Adhesin/CTXA2B chimaeric protein in Escherichia coli TB1 carrying pMALfimH/ctxa2b. Our data demonstrate that optimal concentration of IPTG for increased production of chimaeric protein was 0.5 mM. Additionally, culture time was 10 hours and temperature, 37${\circ}C$.