Browse > Article

Escherichia coli Can Produce Recombinant Chitinase in the Soil to Control the Pathogenesis by Fusarium oxysporum Without Colonization  

Chung, Soo-Hee (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Kim, Sang-Dal (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.3, 2007 , pp. 474-480 More about this Journal
Abstract
Fusarium wilt of cucumbers was effectively controlled by Escherichia coli expressing an endochitinase gene (chiA), and the rate was as effective (60.0%) as the wild-type strain S. proteamaculans 3095 (55.0%) where the gene was cloned. However, live cells of soil inoculated E. coli host harboring the chiA gene did not proliferate but declined 100-fold from $10^8$ CFU during the first week and showed less than 10 cells after day 14, suggesting that E. coli was able to express and produce the chitinase enzyme to the soil even as the population was gradually decreasing. Because the majority of the strains was alive for only a short period of time and the Fusarium-affected seedlings showed symptoms of wilting within 7-10 days, it seems that the pathogen control was decided early after the introduction of the biocontrol agent, eliminating the survival of the antagonist. These results indicated that soil inoculated E. coli could sufficiently express and produce the recombinant protein to control the pathogen, and root or soil colonization of the antagonist might not be a significant factor in determining the efficacy of biological control.
Keywords
Escherichia coli; chitinase; biocontrol; colonization; Fusarium wilt;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Brurberg, M. B., V. G. Eijsink, and I. F. Nes. 1994. Characterization of a chitinase gene (chiA) from Serratia marcescens BJL200 and one-step purification of the gene product. FEMS Microbiol. Lett. 124: 399-404   DOI   ScienceOn
2 Bryant, D. A. and N. Tandeau de Marsac. 1988. Isolations of gene encoding components of the photosynthetic apparatus. Meth. Enzymol. 167: 755-765   DOI
3 Chermin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720- 1726
4 Gal, S.-W., J.-Y. Choi, C.-Y. Kim, Y.-H. Cheong, Y.-J. Choi, J.-D. Bahk, S.-Y. Lee, and M.-J. Cho. 1997. Isolation and characterization of 54-kDa and 22-kDa chitinase genes of Serratia marcescens KCTC2172. FEMS Microbiol. Lett. 151: 197-204   DOI   ScienceOn
5 Gal, S.-W., J.-Y. Choi, C.-Y. Kim, Y.-H. Cheong, Y.-J. Choi, S.-Y. Lee, J.-D. Bahk, and M.-J. Cho. 1998. Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol. Lett. 160: 151-158   DOI
6 Herrero, M., V. de Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567   DOI
7 Lee, E.-T. 1999. Antifungal mechanisms and genetic development of antagonistic bacterium on the phytopathogenic fungi. Ph. D. dissertation. Yeungnam University
8 Lee, E.-T., S.-K. Lim, D.-H. Nam, Y.-H. Khang, and S.-D. Kim. 2003. $Pyoverdin_{2112}$ of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421
9 Lim, H.-S., J.-M. Lee, and S.-D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
10 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
11 Suzuki, K., M. Taiyoji, N. Sugawara, N. Nikaidou, B. Henrissat, and T. Watanabe. 1999. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem. J. 343: 587-596   DOI   ScienceOn
12 Lee, E.-T. and S.-D. Kim. 1999. Isolation and antifungal activity of the chitinase producing bacterium Serratia sp. 3095 as antagonistic bacterium against Fusarium sp. J. Korean Soc. Agric. Chem. Biotechnol. 42: 181-187
13 Lim, H.-S. and S.-D. Kim. 1994. The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL-1, as a biocontrol agent. J. Microbiol. Biotechnol. 4: 134-140
14 Gohel, V., D. Jiwan, P. Vyas, and H. S. Chhatpar. 2005. Statistical optimization of chitinase production by Pantoea dispersa to enhance degradation of crustacean chitin waste. J. Microbiol. Biotechnol. 15: 197-201   과학기술학회마을
15 Harpster, M. H. and P. Dunsmuir. 1989. Nucleotide sequence of the chitinase B gene of Serratia marcescens QMB1466. Nucleic Acids Res. 17: 5395   DOI   ScienceOn
16 Watanabe, T., W. Oyanagi, K. Suzukio, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017-4022   DOI
17 Romaguera, A., U. Menge, R. Breves, and H. Diekmann. 1992. Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity. J. Bacteriol. 174: 3450-3454   DOI
18 Chung, S. and S.-D. Kim. 2005. Biological control of phytopathogenic fungi by Bacillus amyloliquefaciens 7079; suppression rates are better than popular chemical fungicides. J. Microbiol. Biotechnol. 15: 1011-1021   과학기술학회마을
19 Downing, K. J., G. Leslie, and J. A. Thomson. 2000. Biocontrol of the sugarcane borer Eldana saccharina by expression of Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl. Environ. Microbiol. 66: 2804-2810   DOI   ScienceOn
20 Frankowski, J., M. Lorito, F. Scala, R. Schmid, G. Berg, and H. Bahl. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176: 421-426   DOI   ScienceOn
21 Ordentlich, A., Y. Elad, and I. Chet. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78: 84-88
22 Jung, W.-J., J.-H. Kuk, K.-Y. Kim, T.-H. Kim, and R.-D. Park. 2005. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 15: 274-280   과학기술학회마을
23 Turner, J. T., J. S. Lampel, R. S. Stearman, G. W. Sundin, P. Gunyuzlu, and J. J. Anderson. 1991. Stability of the $\delta$-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl. Environ. Microbiol. 57: 3522-3528
24 Brurberg, M. B., V. G. Eijsink, A. J. Haandrikman, G. Venema, and I. F. Nes. 1995. Chitinase B from Serratia marcescens BJL200 is exported to the periplasm without processing. Microbiology 141: 123-131   DOI   ScienceOn
25 Inbar, J. and I. Chet. 1991. Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne pathogens by this bacterium. Soil Biol. Biochem. 23: 973-978   DOI   ScienceOn
26 Jones, J. D. G., K. L. Grady, T. V. Suslow, and J. R. Bedbrook. 1986. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 5: 467-473
27 Neiendam Nielsen, M. and J. Sorensen. 1990. Chitinolytic activity of Pseudomonas fluorescens isolated from barley and sugar beet rhizosphere. FEMS Microbial Ecol. 30: 217- 227
28 Lee, E.-T. and S.-D. Kim. 1999. Purification and characterization of antifungal chitinase from indigenous antagonistic microorganism Serratia sp. Agric. Chem. Biotechnol. 42: 7-11
29 Watanabe, T., K. Kimura, T. Sumiya, N. Nikaidou, K. Suzuki, M. Suzuki, M. Taiyoji, S. Ferrer, and M. Regue. 1997. Genetic analysis of the chitinase system of Serratia marcescens 2170. J. Bacteriol. 179: 7111-7117   DOI