• Title/Summary/Keyword: recombinant E. coli

Search Result 943, Processing Time 0.023 seconds

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

Development of pSJE6c, an Expression Vector for Kimchi Lactic Acid Bacteria, and Heterologous Gene Expression Using the Vector (김치유산균용 발현벡터 pSJE6c 개발과 이를 이용한 외래 유전자 발현)

  • Lee, Kang-Wook;Park, Ji-Yeong;Lee, Ji-Yeon;Lee, Hwang-A;Baek, Chang-Un;Jo, Hyeon-Deok;Kim, Joo-Yeon;Kwon, Gun-Hee;Chun, Ji_Yeon;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.389-398
    • /
    • 2009
  • Development of expression vectors is important for the basic and applied researches on kimchi LAB (lactic acid bacteria). An expression vector, pSJE6c was constructed by inserting P6C promoter sequence from Lactococcus lactis into pSJE, a shuttle vector for E. coli and Leuconostoc species. To test the efficiency of pSJE6c, aga ($\alpha$-galactosidase) and lacZ ($\beta$-galactosidase) genes were expressed in Lactobacillus brevis 2.14. Compared to the pSJE, expression levels of both genes were increased, indicating P6C promoter was better than indigenous promoters. Enzyme activities of L. brevis cells harboring pSJE6caga (pSJE6c with aga) or pSJE6Z (pSJE6c with lacZ) were 1.5-2 fold higher than those with pSJEaga (pSJE with aga) or pSJEZ (pSJE with lacZ). More RNA transcripts were detected in cells harboring pSJE6c based recombinant plasmid. The results indicated that heterologous gene expressions in kimchi LAB could be improved significantly by use of efficient expression vectors.

Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye (형광 물질 직접 표지를 위한 Poly Lysine 도입 Lym-1 단일사슬 항체의 제조 및 면역반응성 평가)

  • Jung, Jae-Ho;Choi, Tae-Hyun;Woo, Kwang-Sun;Chung, Wee-Sup;Kang, Joo-Hyun;Jeong, Su-Young;Choi, Chang-Woon;Lim, Sang-Moo;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • Purpose: Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Materials and Methods: Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FIT( conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Results: Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Conclusion: Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity.