• 제목/요약/키워드: recombinant CYP1 enzyme

검색결과 10건 처리시간 0.018초

Structural Insights into the Interaction of Terpenoids with Streptomyces avermitilis CYP107P2

  • Eunseo Jeong;Vitchan Kim;Changmin Kim;Yoo-bin Lee;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.474-480
    • /
    • 2024
  • Streptomyces avermitilis genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in Escherichia coli and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (Kd) ranged from 15.9 to 50.8 µM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid compound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a Streptomyces P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme's involvement in terpene reactions.

Bioactivation of Aromatic Amines by Human CYP2W1, An Orphan Cytochrome P450 Enzyme

  • Eun, Chang-Yong;Han, Song-Hee;Lim, Young-Ran;Park, Hyoung-Goo;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Toxicological Research
    • /
    • 제26권3호
    • /
    • pp.171-175
    • /
    • 2010
  • The human genome contains approximately 13 orphan cytochrome P450 (P450, CYP) genes, of which the apparent function or substrate has not been identified. However, they seem to possess their own biological relevance in some tissues or developmental stages. Here, we characterized the heterologously expressed CYP2W1, an orphan P450 enzyme. The recombinant CYP2W1 protein containing a $6{\times}$(His)-tag at Nterminus has been expressed in Escherichia coli and purified. Expression level of CYP2W1 holoenzyme was around 500 nmol P450 holoenzyme per liter culture medium. The reduced CO difference spectrum of CYP2W1 showed a maximum absorption at 449 nm. CYP2W1 indicated the significant induction to bioactivate Trp-P-1, MeIQ, and IQ in E. coli DJ701 tester strain. However, the bioactivation of B[$\alpha$]P, and NNK by CYP2W1 was relatively low. The model structure of CYP2W1 suggested the characteristic P450 folds with the lengths and orientations of the individual secondary elements. The F-G loop is situated on the distal side of heme to accommodate the flexibility of active site of CYP2W1. These studies can provide useful information for the finding of its biological roles and structure-function relationships of an orphan CYP2W1 enzyme.

Heterologous Expression of Rhizopus Oryzae CYP509C12 Gene in Rhizopus Nigricans Enhances Reactive Oxygen Species Production and 11α-Hydroxylation Rate of 16α, 17-Epoxyprogesterone

  • Shen, Chaohui;Gao, Xiyang;Li, Tao;Zhang, Jun;Gao, Yuqian;Qiu, Liyou;Zhang, Guang
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.301-307
    • /
    • 2019
  • The $11{\alpha}$-hydroxylation of $16{\alpha}$, 17-epoxyprogesterone (EP) catalyzed by Rhizopus nigricans is crucial for the steroid industry. However, lower conversion rate of the biohydroxylation restricts its potential industrial application. The $11{\alpha}$-steroid hydroxylase CYP509C12 from R. oryzae were reported to play a crucial role in the $11{\alpha}$-hydroxylation in recombinant fission yeast. In the present study, the CYP509C12 of R. oryzae (RoCYP) was introduced into R. nigricans using the liposome-mediated mycelial transformation. Heterologous expression of RoCYP resulted in increased fungal growth and improved intracellular reactive oxygen species content in R. nigricans. The $H_2O_2$ levels in RoCYP transformants were approximately 2-folder that of the R. nigricans wild type (RnWT) strain, with the superoxide dismutase activities increased approximately 45% and catalase activities decreased approximately 68%. Furthermore, the $11{\alpha}$-hydroxylation rates of EP in RoCYP transformants (C4, C6 and C9) were 39.7%, 38.3% and 38.7%, which were 12.1%, 8.2% and 9.4% higher than the rate of the RnWT strain, respectively. This paper investigated the effect of heterologous expression of RoCYP in R. nigricans, providing an effective genetic method to construct the engineered strains for steroid industry.

Effect of B-Ring-Oh Numbers of 5,7-Dihydroxyflavone on the Activity of Cyp1 Enzymes

  • Lee, Sang-Bum;Kim, Hyun-Jung;Kim, Hwan-Mook;Park, Young-In;Dong, Mi-Sook
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.169-169
    • /
    • 2003
  • CYP1 enzymes, CYP1A1, CYP1A2 and CYP1B1, are known to bioactivate procarcinogens particularly polyaromatic compounds. Flavonoids are a class of natural compounds that are present in edible plants. Structurally, these compounds are polyphenols with two aromatic rings (A, B) and a heterocycyclic ring (C).(omitted)

  • PDF

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.

AtCYP78A7 과발현 환경스트레스 내성 형질전환 벼의 단백질 진단 키트 개발 (Development of a Kit for Diagnosing AtCYP78A7 Protein in Abiotic-tolerant Transgenic Rice Overexpressing AtCYP78A7)

  • 남경희;박정호;백인순;김호방;김창기
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.835-840
    • /
    • 2018
  • 본 연구는 시토크롬 P450 단백질을 암호화하는 애기장대 유래의 AtCYP78A7을 과발현하는 형질전환 식물체로부터 AtCYP78A7 단백질을 특이적으로 인식하는 단일큰론 항체의 제조와 그 항체를 AtCYP78A7 단백질과 접촉시켜 항원-항체 복합체 형성을 검출함으로써 AtCYP78A7 단백질을 효소면역학적(ELISA) 방법으로 검출하는 진단 키트를 개발하기 위하여 수행하였다. 재조합한 GST-AtCYP78A7 단백질을 항원으로 사용하여 단일클론 항체를 분비하는 융합세포주를 제조한 후 비오틴화 및 페어링 테스트를 통해 포획항체와 검출항체를 선정하였으며, GST-AtCYP78A7 정제 단백질을 기준으로 일품벼, 화영벼, AtCYP78A7 과발현 벼(10B-5, 18A-4)의 용해물을 검출항원으로 사용하여 product test를 진행하였다. 그 결과 AtCYP78A7 단백질에 특이적으로 결합하는 4개의 단클론 항체(mAb 6A7, mAb 4C2, mAb 11H6, mAb 7E8)를 생산하였고, 포획항체 mAb 4C2와 검출항체 mAb 7E8-biotin의 조합으로 ELISA 키트를 개발하였다. 개발된 ELISA 키트를 이용한 벼 시료의 분석 결과 AtCYP78A7 과발현 벼는 전체 단백질 대비 AtCYP78A7 단백질의 비율이 0.1% 이상인 양성으로, 일품벼와 화영벼는 0.1% 미만인 음성으로 나타나 키트를 이용한 AtCYP78A7 단백질의 검출이 가능하였으며, 따라서 본 키트는 향후 AtCYP78A7를 과발현하는 형질전환 작물을 대상으로 하는 환경 모니터링 또는 인체 위해성 평가에 유용하게 활용될 수 있을 것으로 사료된다.

Substrate reduction therapy as a new treatment option for patients with Gaucher disease type 1: A review of literatures

  • Sohn, Young Bae;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2016
  • Gaucher disease type 1 (GD1) is an inherited lysosomal storage disorder caused by deficiency of acid ${\beta}$-glucosidase. The diminished enzyme activity leads to the accumulation of substrates and results in multi-systemic manifestations including hepatosplenomegaly, anemia, thrombocytopenia, and bone diseases. Enzyme replacement therapy (ERT) by infusion of recombinant protein has been the standard treatment for over 20 years. Despite the successful long-term treatment with ERT, several unmet needs remain in the treatment of GD1 such as severe pulmonary and skeletal manifestations. Substrate reduction therapy (SRT) reduces the accumulation of substrates by inhibiting their biosynthesis. Eliglustat, a new oral SRT, was approved in United States and Europe as a first-line therapy for treating adult patients with GD1 who have compatible CYP2D6 metabolism phenotypes. Although eliglustat is not yet available in Korea, introduction and summary of this new treatment modality are provided in this paper by review of literatures. Despite the fact that there are only limited studies to draw resolute conclusions, the current data demonstrated that eliglustat is not inferior to ERT in terms of its clinical efficacy. The approval of eligustat enables eligible adult GD1 patients to have the option of oral therapy although it still needs further studies on long-term outcomes. The individual patient should be assessed carefully for the choice of treatment modality when eliglustat becomes available in Korea. Furthermore, the clinical guidelines for Korean patients with GD1 regarding the use of eliglustat needs to be developed in near future.

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.