• Title/Summary/Keyword: recombinant $\beta$-galactosidase production

Search Result 28, Processing Time 0.021 seconds

Microbial β-Galactosidase of Pediococcus pentosaceus ID-7: Isolation, Cloning, and Molecular Characterization

  • Lee, Ji-Yeong;Kwak, Mi-Sun;Roh, Jong-Bok;Kim, Kwang;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.598-609
    • /
    • 2017
  • Pediococcus pentosaceus ID-7 was isolated from kimchi, a Korean fermented food, and it showed high activity for lactose hydrolysis. The ${\beta}$-galactosidase of P. pentosaceus ID-7 belongs to the GH2 group, which is composed of two distinct proteins. The heterodimeric LacLM type of ${\beta}$-galactosidase found in P. pentosaceus ID-7 consists of two genes partially overlapped, lacL and lacM encoding LacL (72.2 kDa) and LacM (35.4 kDa). In this study, Escherichia coli MM294 was used for the production of LacL, LacM, and LacLM. These three types of recombinant proteins were expressed, purified, and characterized. The specific activities of LacLM and LacL were 339 and 31 U/mg, respectively. However, activity was not detected with LacM alone. The optimal pH of LacLM and LacL was pH 7.5 and pH 7.0, and the optimal temperature of LacLM and LacL was $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimal temperature changes indicate that LacLM is able to achieve higher activity at a relatively lower temperature. LacLM was strongly activated by $Mg^{2+}$, $Mn^{2+}$, and $Zn^{2+}$, which was not true for LacL. Consistent with this, EDTA strongly inactivated LacLM and LacL, but the presence of reducing agents did not dramatically alter the activity. Taken together, multiple alignment of amino acid sequences and phylogenetic analysis results of LacL and LacM of P. pentosaceus ID-7 suggest the evolution of LacL into LacLM and that the use of divalent metal ions results in higher activity.

Construction of a Baculovirus Expression System Using Hyphantria cunea Nuclear Polyhedrosis Virus for Eukaryotic Cells

  • Lee, Hyung-Hoan;Kang, Bong-Joo;Park, Kap-Ju;Cha, Soung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.676-684
    • /
    • 1998
  • Baculovirus transfer and expression vectors with Hyphantria cunea nuclear polyhedrosis virus (HcNPV) were constructed. An initial transfer vector, pHcEV, constructed using HcNPV was previously reported (Park et al. 1993. J. Kor. Soc. Viral. 23: 141-151). Herein, the size of the vector was properly reduced, and a functionally perfect vector was constructed and named pHcEV-IV (6.7 kb). The vector has a 2.2-kb HcNPV DNA sequence in the 5'-flanking region of the vector's polyhedrin gene promoter. The 1.8-kb HcNPV DNA sequence, poly A signal sequence, T3 primer sequence, and 13 multicloning site sequences, in order, were ligated in front of the translation start codon of the polyhedrin gene. The cloning indicating marker lacZ gene was inserted into the pHcEV-IV, named pHcEV-IV-lacZ, and transferred into the wild-type virus. Recombinant expression virus, lacZ-HcNPV, was constructed by replacing the lacZ gene in the pHcEV-IV-lacZ with the polyhedrin gene of the wild-type virus. The recombinant virus was isolated from blue plaques that produce $\beta$-galactosidase without polyhedra. The lacZ gene insertion was confirmed by Southern hybridization analysis. The expression of the lacZ gene in Spodoptera frugiperda cells infected with the lacZ-HcNPV was examined by SDS-PAGE and colorimetric assay. One 116-kDa LacZ protein band appeared on the PAGE. The production rate of the $\beta$-galactosidase was approximately 50 international units (IU) per min per ml between 2 to 5 days postinfection (p.i.). The highest activity occurred at five days p.i. was 170 IU/min/$m\ell$. The enzyme activity first appeared about 20 h p.i. as measured by colorimetric assay.

  • PDF

Iron Chelator-Inducible Expression System for Escherichia coli

  • Lim, Jae-Myung;Hong, Mi-Ju;Kim, Seong-Hun;Oh, Doo-Byoung;Kang, Hyun-Ah;Kwon, Oh-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1357-1363
    • /
    • 2008
  • The $P_{entC}$ promoter of the entCERA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the $P_{entC}$ promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the $P_{entC}$ promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding $\beta$-galactosidase. $\beta$-Galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level $\beta$-galactosidase expression by the $P_{entC}$ promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.

Bead-to-Bead Cell Transfer by Induction of Detachment of Anchorage Dependent HeLa Cells Grown on Macroporous Microcarriers (부착성 HeLa 세포의 탈리 유도에 의한 다공성 미립담체의 담체간 전이 배양)

  • 이두훈;박정극
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Using a cellulose macroporous microcarrier, HeLa cells were cultivated in 100mL spinner flask(Bellco Co., USA) and confluent cell laden microcarriers were subcultured by bead-to-bead cell transfer method. In macroporous mcirocarrier-HeLa system viable suspended cells played an important role in bead-to-bead cell transfer and that could be increased by use of RPMI-1640, a calcium-ion-reduced-media and high speed agitation. Successful bead-to-bead cell transfers were performed continuously three time in spinner flask. We applied this technique to produce recombinant Vaccinia virus which express $\beta$-galactosidase. Recombinant protein yield of bead-to-bead transferred culture was comparable to conventional microcarrier cultures that were inoculated by cells detached from T-flask. Although trypsinization is a useful method for subculturing microcarriers in some cases, that process adds quality control problem and handling steps to large scale cell production. There fore, bead-to-bead cell transfer technique offers another convenient and efficient scale-up method for continuous microcarrier cultures.

  • PDF

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

β-Galactosidase-catalyzed Synthesis of 1, 2-Hexanediol Galactoside and its Purification using Ethyl Acetate Extraction followed by Silica Gel Chromatography (대장균 β-Galactosidse를 이용한 1, 2-Hexanediol galactoside의 합성과 Ethyl Acetate 추출 및 Silica Gel Chromatography를이용한 정제)

  • Kim, Yi-Ok;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.498-506
    • /
    • 2016
  • 1, 2-Hexanediol galactoside (HD-gal) has been previously synthesized from 1, 2-hexanediol (HD), in which recombinant ${\beta}$-galactosidase (${\beta}$-gal) of Escherichia coli (E. coli) was used for transgalactosylation reaction. In this study, a method for HD-gal purification from the reaction mixture was particularly investigated. Using ${\beta}$-gal-containing E. coli, HD-gal was synthesized from 75 mM HD for 48 hr under 300 g/l lactose concentration. Then, HD-gal synthesis from HD was confirmed by TLC analysis, and the existence of E. coli ${\beta}$-gal during 48 hr-reaction was also confirmed by Western blotting, in which the conversion yield of HD to HD-gal reached about 94% during 48 hr. To establish an efficient method for HD-gal purification, we carried out the solvent extraction of the reaction mixture, followed by silica gel chromatography, particularly in order to remove the residual HD. Two water-immiscible solvents, such as methylene chloride and ethyl acetate, were investigated comparatively to find out appropriate solvent. Then, it was found that residual HD was almost removed when ethyl acetate extraction of water phase of reaction mixture was carried out four times. Subsequently, silica gel chromatography was carried out, and purified HD-gal could be finally obtained. The production yield for HD-gal from 75 mM HD was $8.9{\pm}0.6%$ (n=3) (mole basis) or $21.1{\pm}1.4%$ (n=3) (weight basis). For further study, using purified HD-gal, we will investigate the minimum inhibitory concentrations (MICs) of HD-gal against bacteria. In addition, cytotoxicity to human skin cells of HD-gal will be examined.

Induction of the T7 Promoter Using Lactose for Production of Recombinant Plasminogen Kringle 1-3 in Escherichia coli

  • Lim, Hyung-Kwon;Lee, Shi-Uk;Chung, Soo-Il;Jung, Kyung-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.225-230
    • /
    • 2004
  • A plasminogen kringle domain 1 to 3, rKl-3, was expressed in Escherichia coli under the control of T7 promoter. For the cost-effective production of rKl-3, the induction process was analyzed and optimized. Induction characteristics with lactose were analyzed in terms of induction time and inducer concentration in various culture conditions including batch and high-cell-density fed-batch cultures. In the fed-batch culture, the induction around 6 h after initiation of the DO-stat fed-batch culture resulted in the highest expression level of rKI-3 among the induction points examined. The highest demand of oxygen at this point was crucial for the maximum expression level of rKI-3. As the lactose concentration increased, the expression level also increased, though the expression level showed a plateau above a concentration of 14 mM of lactose. Lactose acted less specifically than IPTG since most of it was hydrolyzed to glucose and galactose. However, using lactose, the cell growth and the maximum expression level of rKl-3 increased by 20% and 24%, respectively, compared with those using IPTG in the fed-batch culture. The lactose seemed to be hydrolyzed by intracellular and extracellular $\beta$-galactosidase liberated by cell lysis at the same time. Residual concentration of glucose was maintained to a a limit of detection by high performance liquid chromatography, and galactose was not consumed by the host strain Escherichia coli BL2l(DE3).

Regulatory Characterization of xylA Promoter Region in Escherichia coli (대장균의 xylA 프로모터 영역의 조절 특성)

  • Kang, Byung-Tae;Roh, Dong-Hyun;Joo, Gil-Jae;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.443-448
    • /
    • 1996
  • In order to investigate the function of xylA promoter(Pxyl) as regulatory region Pxyl-lacZ fusion gene was constructed by the insertion of xylA promoter to the multiple cloning site of upstream of lacZ gene in a multicopy numbered plasmid pMC1403 containing promoterless lac operon, which was designated pMCX191, and Pxyl-lacZ fragment from pMCX191 was inserted to low copy numbered plasmid pLG339, designated pLGX191. The expressions of ${\beta}-galactosidase$ in these recombinant plasmids containing Pxyl-lacZ fusion gene were induced strongly by the addition of xylose, repressed by the addition of 0.2% glucose in the presence of xylose. The catabolite repressions were derepressed by the addition of 1 mM cAMP as same as native xylA gene. The fragment of xylA promoter was partially deleted from the upstream of xylA promoter by exonuclease III to investigate the regulation site of xylA promoter and the degrees of deletion derivatives of xylA promoter were analyzed by the DNA base sequencing. By the investigations of the induction by xylose, repression by glucose and derepression by cAMP on xylose isomerase production, the regulation site of xylA promoter may be located in segment between -165 and -59 bp upstream from the initiation site of xylA translation.

  • PDF