• Title/Summary/Keyword: recoil mechanism

Search Result 16, Processing Time 0.03 seconds

A Study on Recoil Force Reduction Using a Low-recoil Direct Gun (저반동 전차포의 주퇴력 저감 연구)

  • Park, Jin-Saeng
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.125-130
    • /
    • 2016
  • A low-recoil direct gun is useful in reducing the fire impulse generated by using a traditional shell. To apply a control equation to an AMESim Model, we have formulated a control equation for a recoil mechanism from the free object diagram. By modeling this equation, we have been able to compare the recoil distance and recoil force of a low-recoil direct gun. Here, we can analyze the recoil characteristics between traditional direct guns and low-recoil direct guns with perforated muzzle brakes. It is possible to mount a low-recoil direct gun with a perforated muzzle brake on a lightweight tracked vehicle by reducing its fire impulse.

Control of a Soft Recoil System for Recoil Force Reduction (사격충격력 저감을 위한 연식주퇴계의 제어)

  • Shin, Chul-Bong;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae;Han, Tae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.764-774
    • /
    • 2008
  • A fire-out-of-battery(FOOB) mechanism, which is a new recoil technology, can reduce dramatically the level of a recoil force compared to the conventional recoil system. The FOOB mechanism pre-accelerates the recoil parts in direction opposite of conventional recoil before ignition. This momentum of the recoil parts due to pre-acceleration can reduce the firing impulse. In this paper, the dynamics of the recoil system with this FOOB mechanism is formulated and simulated numerically. The results of the simulation show that the FOOB system can reduce the recoil force and stroke compared to the conventional system under normal condition. When the fault modes happen, the FOOB system may not perform well and may be damaged seriously due to excessive recoil force and stroke. Hence, the control of the fault modes is necessary to achieve the normal operation of the FOOB system. The results that an additional MR damper enables the FOOB system to perform well under all firing condition.

A Study on Parameters of Soft Recoil Mechanism for Reduction of Recoil Force (주퇴력 저감을 위한 연식 주퇴 메커니즘의 매개변수에 관한 연구)

  • Yang, Tae-Ho;Lee, Young-Shin;Lee, Kyu-Sub;Jun, Sang-Bae;Kang, Kuk-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.823-828
    • /
    • 2012
  • The soft recoil mechanism was an effective mechanism for reducing the recoil force by forwarding momentum. There were some parameters such as the fire angle, firing position, and initial pressure of the recuperator, which influenced the forwarding momentum. These parameters affected the generation of the forwarding momentum in the soft recoil mechanism. To design for the mechanism, the parameters affecting momentum were studied to consider some reasonable conditions. Among the various parameters, the initial pressure of the recuperator and firing position was confirmed as a key factor to have affected the momentum. It was determined that the recoil force had a minimum value when the initial pressure of the recuperator was 180.

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

A Study on Control of a Soft Recoil System for Recoil Force Reduction (사격충격력 저감을 위한 연식주퇴계의 제어에 관한 연구)

  • Shin, Chul-Bong;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.560-564
    • /
    • 2007
  • In order to reduce the level of recoil force, new recoil technology must be employed. The present study discusses a soft-recoil mechanism that can reduce dramatically the recoil force. The dynamics of the soft-recoil system with hydraulic dampers are described and simulated. The results of the simulation show that FOOB system can reduce the recoil force and the recoil stroke compared to conventional systems. However, the FOOB system is not able to perform well when the fault modes happen. Hence, this study uses the MR damper to achieving FOOB under fault modes.

  • PDF

A Development of Recoil & Counter Recoil Motion Measurement System Using LVDT

  • Park, Ju-Ho;Hong, Sung-Soo;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • This paper presents a recoil and counter recoil motion measurement system using linear variable differential transformers (LVDT). The output of the LVDT is obtained from the differential voltage of the secondary transformers. Since a transducer core is attached to the motion body, the output is directly proportional to the movement length of the core. Displacement, velocity and acceleration are measured from the LVDT. With a comparison between the measurement result and the reference value obtained by the highly accurate Vernier calipers, it is proved that the measurement system with the LVDT is applicable to the test of the moving part of the mechanism with better accuracy.

  • PDF

주퇴운동에 대한 제퇴기의 효과에 관한 연구

  • 이영현;강국정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1088-1092
    • /
    • 1996
  • This paper represents how a muzzle brake affects the dynamic characteristics of the recoil system. A muzzle brake is a device attached to the muzzle for the express purpose of diverting the propellant gas stream from its original path, thereby creating a foreward thrust on the recoiling gun which is in opposition to its rearward motion. In order to obtain the full advantage of a muzzle brake, it is necessary that the recoil system of a gun be designed for the purpose.

  • PDF

Critical Heat Flux Enhancement Mechanism on a Surface with Nano-Structures (나노 구조가 형성된 열전달 표면에서의 임계 열유속 증진 메커니즘)

  • Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.619-624
    • /
    • 2014
  • The critical heat flux (CHF) on a heat transfer surface with nanostructures is known to be significantly better than that on flat surfaces. Several physical mechanisms have been proposed to explain this phenomenon. However, almost all studies conducted so far have been qualitative, and a generalized theory has not yet been established. In this study, we developed a quantitative mechanism for CHF enhancement on a surface with nanostructures, based on vapor recoil and surface adhesion forces. We focused on the increase in the length of the triple contact line owing to the formation of nanostructures and the adhesion force between them and the liquid.

Analysis of Isolation System for Impulsive Force Device with Recoil Mechanism (반동방식 충격기구의 완충시스템 해석)

  • Kim, HyoJun;Ryu, BongJo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.272-279
    • /
    • 2005
  • In this study the optimal isolation system for the prototype HIFD(high impulsive force device) is investigated. For this purpose, firstly, the dynamic behavior of a human body and a transmitted force under specific operation conditions are analyzed through a series of experimental works using the devised test setup. In order to design the optimal dynamic absorbing system, the parameter optimization process is performed using the simplified isolation system model based on the experimental results of linear impulse and transmitted force. Finally, under the parameters satisfying the constraints of the buffering displacement and the transmitted force, the performance of the designed isolation system for the prototype HIFD is evaluated by experiment.

MECHANISM OF KEYHOLE FORMATION AND STABILITY IN STATIONARY LASER WELDING

  • Lee, Jae Y.;Sung H. Ko;Choong D. Yoo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.644-651
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes are investigated using a numerical simulation. The effect of multiple reflections in the keyhole is estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution are calculated numerically. In the simulation, the keyhole is formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure oppose cavity formation. At laser powers of 500W and greater, the protrusion occurs on the keyhole wall, which results in keyhole collapse and void formation at the bottom. Initiation of the protrusion is caused mainly by collision of upward and downward flows due to the pressure components.

  • PDF