• Title/Summary/Keyword: recognition distance

Search Result 1,007, Processing Time 0.023 seconds

A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering (혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화)

  • Ann, Tae-Ock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.167-176
    • /
    • 2005
  • This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.

Development of Obstacle Recognition System Using Ultrasonic Sensor (초음파 센서를 이용한 장애물 인식 장치 개발)

  • Yu, Byeonggu;Kwon, Sunwook;Kim, Jusung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • In this Paper, we Propose the Low-cost Obstacle Recognition System Utilizing the Ultrasonic Sensor. Developed Obstacle Recognition System can be used to Aid the Visually Impaired Person. The Existence of the Obstacle is Notified to the Person through the Embodied Electronic Vibration Motor. The Timing Difference from the Recognition to the Notification Indicates the Distance to the Obstacle. Pulsed Ultrasonic Signal Controlled by MCU is Utilized and the Reflected Pulse through the Obstacle gives the Developed System the Existence of the Obstacle and the Distance to the Object. Pulse is sent Repetitively to Improve the Detection Accuracy. Developed Apparatus gives 30 Degree of Detection Angle and 2cm-30cm of the Detection Range when the Apparatus is Tested under Normal Walking Environment.

Performance Improvement Strategies on Minimum Distance Classification for Large-Set handwritten Character Recognition (대용량 필기 문자인식을 위한 최소거리 분류법의 성능 개선 전략)

  • Kim, Soo-Hyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2600-2608
    • /
    • 1998
  • This paper proposes an algorithm for off line recognition of handwritten characters, especially effective for large-set characters such as Korean and Chinese characters. The algorithm is based on a minimum distance dlassification method which is simple and easy to implement but suffers from low recognition performance. Two strategies have been developed to improve its performance; one is multi-stage pre-classification and the other is candicate reordering. Effectiveness of the algorithm has been proven by and experimet with the samples of 574 classes in a handwritten Korean character catabase named PE02, where 86.0% of recognition accuracy and 15 characters per second of processing speed have been obtained.

  • PDF

Silhouette-Edge-Based Descriptor for Human Action Representation and Recognition

  • Odoyo, Wilfred O.;Choi, Jae-Ho;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

Transformation Based Walking Speed Normalization for Gait Recognition

  • Kovac, Jure;Peer, Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2690-2701
    • /
    • 2013
  • Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometric can be captured at public places from a distance without subject's collaboration, awareness or even consent. Although current approaches give encouraging results, we are still far from effective use in practical applications. In general, methods set various constraints to circumvent the influence factors like changes of view, walking speed, capture environment, clothing, footwear, object carrying, that have negative impact on recognition results. In this paper we investigate the influence of walking speed variation to different visual based gait recognition approaches and propose normalization based on geometric transformations, which mitigates its influence on recognition results. With the evaluation on MoBo gait dataset we demonstrate the benefits of using such normalization in combination with different types of gait recognition approaches.

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

Speech Recognition Using HMM Based on Fuzzy (피지에 기초를 둔 HMM을 이용한 음성 인식)

  • 안태옥;김순협
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.68-74
    • /
    • 1991
  • This paper proposes a HMM model based on fuzzy, as a method on the speech recognition of speaker-independent. In this recognition method, multi-observation sequences which give proper probabilities by fuzzy rule according to order of short distance from VQ codebook are obtained. Thereafter, the HMM model using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. The vocabularies for recognition experiment are 146 DDD are names, and the feature parameter is 10S0thT LPC cepstrum coefficients. Besides the speech recognition experiments of proposed model, for comparison with it, we perform the experiments by DP, MSVQ and general HMM under same condition and data. Through the experiment results, it is proved that HMM model using fuzzy proposed in this paper is superior to DP method, MSVQ and general HMM model in recognition rate and computational time.

  • PDF