• 제목/요약/키워드: recognition algorithm

검색결과 3,560건 처리시간 0.035초

Haar Cascade 필터링을 통한 마스크 착용 여부와 발열 체크 (A Study on the Use of Haar Cascade Filtering to check Wearing Masks and Fever Abnormality)

  • 김의정;김인중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.474-477
    • /
    • 2021
  • 최근 2020년부터 본격적으로 유행한 코로나19를 예방하기 위해 발열 체크, 마스크 착용 유무를 확인하는 곳이 많아졌다. 그러나 마스크 착용과 발열 체크는 일반적으로 사람이 직접 측정하거나 한명씩 기계 앞에 서서 측정하는 방식이 대부분이며 일반적으로 발열 체크시 피부의 최고 온도를 측정하므로 정확도가 떨어지고 대량의 인원 측정시 병목이 나타날 수 있다. 따라서 본 연구에서는 마스크 미착용자와 발열자를 일반 카메라와 열화상 카메라, 인공지능 알고리즘을 통하여 실시간으로 정확하게 자동 분류하고 표시하여 전염병 확산을 막는 방법에 대하여 제안하고자 한다.

  • PDF

Elastic Net를 이용한 시간 지연 추정 알고리즘 (Time delay estimation algorithm using Elastic Net)

  • 임준석; 이근화
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.364-369
    • /
    • 2023
  • 두 개 수신기에 들어오는 신호 간의 시간 지연 추정 기술은 수중 음향 뿐만 아니라 실내 음향 및 로보틱스에 이르기까지 다양한 분야에서 응용되고 있는 기술이다. 시간 지연 추정 기술에는 수신기 사이 상호 상관으로부터 시간 지연량을 추정하는 방법이 한 기술 부류이고, 수신기 사이의 시간 지연을 파라메트릭 모델링을 하여 그 파라미터를 시스템 인식의 방법으로 추정하는 기술 부류가 있다. 두 부류 중 후자의 경우 시스템의 파라미터 중에서 지연과 직접 관련 있는 파라미터는 전체 중 극히 일부라는 특성이 있다. 이 특성을 이용하여 Lasso 정규화 같은 방법으로 추정 정확도를 높이기도 한다. 그러나 Lasso 정규화의 경우 필요한 정보가 소실되는 경우가 발생한다. 본 논문에서는 이를 보완하기 위해서 Lasso 정규화에 Ridge 정규화를 덧붙인 Elastic Net을 사용한 방법을 제안한다. 제안한 방법을 기존의 일반 상호 상관(Generalized Cross Correlation, GCC) 방법 및 Lasso 정규화를 사용한 방법과 비교하여, 백색 가우시안 신호원 및 유색 신호원에서도 추정 오차가 매우 적음을 보인다.

LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석 (Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image)

  • 심승보
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR는 자율 주행뿐만 아니라 다양한 산업 현장에 적용되어 대상의 크기와 거리를 측정하는 데 사용되고 있다. 이에 더하여 이 센서는 반사된 빛의 양을 바탕으로 반사 강도 영상 또한 제공한다. 이는 측정 대상의 형상에 대한 정보를 제공하여 센서 데이터 처리에 긍정적인 효과를 일으킨다. LiDAR는 고해상도가 될수록 높은 성능을 보장하지만 이는 센서 비용의 증가를 야기하는데, 이 점은 반사 강도 영상에도 해당된다. 높은 해상도의 반사 강도 영상을 취득하기 위해서는 고가의 장비 사용이 필수적이다. 따라서 본 연구에서는 저해상도의 반사 강도 영상을 고해상도의 영상으로 개선하는 인공지능을 개발하였다. 이를 위해서 본 연구에서는 최적의 초해상화 신경망 모델을 위한 파라미터 분석을 수행하였다. 또한, 초해상화 알고리즘을 2,500여 장의 반사 강도 영상에 적용하여 훈련과 검증을 하였다. 결과적으로 반사 강도 영상의 해상도를 향상시켰다. 바라건대 본 연구의 결과가 향후 자율 주행 분야에 적용되어 주행환경 인식과 장애물 탐지 성능 향상에 기여할 수 있기를 기대하는 바이다.

물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구 (Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation)

  • 유영준;강성훈;김주환;노성인;이기현;이승용;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법 (Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments)

  • 최갑근;김순협
    • 한국음향학회지
    • /
    • 제28권5호
    • /
    • pp.447-453
    • /
    • 2009
  • 이 논문은 음성 에너지를 최대화 하여 낮은 SNR환경에서 음성 존재 여부를 판단하고 정확한 끝점을 검출하는 방법에 대한 것이다. 전통적인 VAD (Voice Activity Detection) 알고리듬은 잡음의 추정치를 이용해 음성과 비음성 구간을 선택하여 낮은 SNR환경이나 비안정 잡음환경에서는 정확하지 못한 문턱값으로 인해 부정확한 끝점검출을 하였다. 또한 잡음의 시간적 변화를 반영하기 위해 비교적 큰 분석 구간을 두어 계산량이 증가함에 따라 실제 응용에 적합하지 않은 단점이 있다. 이 논문은 잡음환경에서 정확한 음성 구간의 검출을 위해 심리음향 모델에 기반 한 바크 스케일 필터 뱅크를 이용하여 주어진 프레임에서 음성 에너지를 최대화 시키고 잡음을 억제하는 SEM-VAD (Speech Energy Maximization-Voice Activity Detection) 방법을 제안하였다. 다양한 잡음환경, SNR 15 dB, 10 dB 5 dB 0 dB 상황에서 실험한 결과 SNR의 변화에 안정적인 문턱값을 얻었고, 음성 검출을 위한 실험에서 자동차 잡음 환경에 대한 PHR (Pause Hit Rate)은 모든 잡음 환경에서 100%의 정확도를 보였고, FAR (False Alarm Rate)는 SNR 15 dB와 10 dB에서는 0%, SNR 5 dB에서 5.6% SNR 0 dB에서 9.5%의 성능을 보였다.

서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획 (Object Pose Estimation and Motion Planning for Service Automation System)

  • 권영우;이동영;강호선;최지욱;이인호
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

발달장애 초기 자가 진단 시스템 개발 (Development of the self-diagnosis system for initial stage of developmental disability)

  • 유원상;정현우
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.367-372
    • /
    • 2024
  • 발달장애는 전체 장애인 수 중에 비교적 낮은 수치에 해당되지만 장애의 정도에서 전반적으로 중증 장애로 분류되고 있다. 이러한 발달장애는 초기에 발견이 된다면 적응력과 초기 대응에 의한 치료 효과가 향상될 수 있지만, 대부분의 부모들은 자신의 아이에게서 징후를 발견하지 못하거나 치료시기를 놓치는 경우가 대다수이다. 본 논문에서는 특이적 행동특성을 기반으로 하는 초기 발달장애 징후를 객관적으로 볼 수 없는 부모나 유아기관 관계자들을 위해 발달장애 초기 특이행동 중 손 퍼덕대기(Hand-Flapping)를 인식할 수 있는 발달장애 진단 알고리듬개발의 선행연구를 수행하였다. 인지영역과 손가락을 정확하게 인식하여, 손퍼덕임 수를 정확하게 카운트하는 것을확인할 수 있었다. 빅데이터를 활용한 알고리듬의 고도화 및 기능적 성능 확장을 통해 다양한 행동패턴의 진단이 가능한 알고리듬 연구가 지속적으로 수행 및 확대될 것으로 전망된다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

깊이정보를 이용한 HEVC의 인코더 고속화 방법 (HEVC Encoder Optimization using Depth Information)

  • 이윤진;배동인;박광훈
    • 방송공학회논문지
    • /
    • 제19권5호
    • /
    • pp.640-655
    • /
    • 2014
  • 최근 영상시스템 환경은 2D 비디오카메라에 깊이 카메라가 부착되어 2D 및 3D 어플리케이션을 지원하는 형태로 보편화 되고 있다. 이러한 3차원 멀티미디어 시스템 환경으로의 변화는 비디오 시스템에서 깊이정보 획득을 용이하게 만들었다. 깊이정보는 객체 구분, 배경영역 인지 등에 이용할 수 있는데, 2D 부호화에 이를 이용한다면 높은 부호화 효율을 얻을 수 있다. 따라서, 본 논문에서는 차세대 2D 비디오 코덱인 HEVC 인코더에 반영한 깊이정보 이용 비디오 부호화 방법을 제안한다. 제안방법으로, 현재 부호화하려는 CU가 배경영역에 위치할 경우 1) 주변블록의 SKIP 모드를 참조하여 결정하는 CU 분할 조기 결정, 2) 시간적 위치의 CU 정보를 이용하여 수행하는 CU 분할 구조 제한, 3) 배경영역에 따른 움직임 예측 탐색 범위 제한이 있다. 실험은 HEVC 참조 소프트웨어인 HM 12.0에 적용하였고, 실험결과 40% 이상의 부호화 복잡도가 감소했으며, BD-Bitrate는 0.5% 손실되었다. 특히, 마이크로소프트사에서 개발한 키넥트를 통해 획득한 영상을 이용한 실험 결과에서는 영상 품질의 큰 열화 없이 기존대비 최대 53%의 부호화 복잡도가 감소하는 결과를 나타내어, 향후 실시간 화상통신, 모바일 또는 핸드헬드 환경에서의 비디오 서비스 등에서 광범위하게 적용할 수 있을 것으로 기대된다.