• Title/Summary/Keyword: recirculation system

Search Result 421, Processing Time 0.043 seconds

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

Numerical Study on the Effect of a Groove of D-type on Internal Flow and Pressure Drop in a Corrugated Pipe (주름관 내부 유동과 압력강하에 대한 D형 그루브의 영향에 관한 수치해석)

  • Hong, Ki Bea;Kim, Dong Woo;Ryou, Hong Sun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A corrugated pipe is widely used in firefighting equipment and sprinkler pipes because of its elasticity, which is less damaged by deformation and convenient facilities. However, the corrugated shape of the wall results in complex internal turbulent flow, and it is difficult to predict the pressure drop, which is an important design factor for pipe flow. The pressure drop in the corrugated tube is a function of the shape factors of the pipe wall, such as groove height, length, and pitch. Existing studies have only shown a study of pressure drop due to length changes in the case of D-shaped tubes with less than 5 pitch (P) and height (K) of the rectangular grooves in the tube. In this work, we conduct a numerical study of pressure drop for P/Ks with length and height changes of 2.8, 3.5 and 4.67 with Re Numbers of 55,000, 70,000 and 85,000. The pressure drop in the corrugated tube was interpreted to decrease with smaller P/K. We show that the pressure drop is affected by the change in the groove aspect ratio, and the increase in the height of the groove increases the recirculation area, and the larger the Reynolds number, the greater the pressure drop.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.

A Study on the Evaluation of Nepal's Inclusive Business Solution: Focusing on the Application of OECD DAC Evaluation Criteria (네팔의 포용적 비즈니스 프로그램 평가에 관한 연구: 경제협력개발기구 개발원조위원회 평가기준 적용을 중심으로)

  • Kim, Yeon-Hong;Lee, Sung-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.177-192
    • /
    • 2021
  • The Development Assistance Committee of the Organization for Economic Cooperation and Development discusses the reorganization of the five evaluation criteria of the Public Development Assistance Committee, which are used internationally, and the five evaluation criteria including adequacy, efficiency, effectiveness, impact, and sustainability when assessing public development assistance in 1991. This study is to derive alternatives by applying the evaluation criteria of the Development Assistance Committee of the Organization for Economic Cooperation and Development in the evaluation of the inclusive business program being implemented in Nepal since 2019. As a result of the study, the adequacy of Nepal's inclusive business program was consistent with continuous employment and job creation for vulnerable groups such as disabled and orphan women. Efficiency can be said to be efficient in that processes such as work order and work confirmation are made with an electronic management tool, and delivery of the result is transmitted online, saving time and cost compared to other industries. The effectiveness of this project can be said to be an effective program in that it provides high-quality jobs such as providing specialized computer graphics education for the vulnerable, such as disabled and orphan women in Nepal, and hiring graduates as employees. Sustainability is the point that KOICA's inclusive business program has enabled vulnerable groups in the existing fields of agriculture and manufacturing to engage in the computer graphics industry, and the scalability of movies, characters, education businesses, and role models in other countries.However, considering that the scale of public development assistance will continue to increase in the future, it is necessary to establish a systematic monitoring system and a recirculation system so that the project between the donor and recipient countries can continue.

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Photoimmunology -Past, Present and Future-

  • Daynes, Raymond A.;Chung, Hun-Taeg;Roberts, Lee K.
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 1986
  • The experimental exposure of animals to sources of ultraviolet radiation (UVR) which emit their energy primarily in the UVB region (280-320nm) is known to result in a number of well-described changes in the recipient's immune competence. Two such changes include a depressed capacity to effectively respond immunologically to transplants of syngeneic UVR tumors and a markedly reduced responsiveness to known inducers of delayedtype (DTH) and contact hypersensitivity (CH) reactions. The results of experiments that were designed to elucidate the mechanisms responsible for UVR-induced immunomodulation have implicated: 1) an altered pattern of lymphocyte recirculation, 2) suppressor T cells(Ts), 3) deviations in systemic antigen presenting cell (APC) potential. 4) changes in the production of interleukin-1-like molecules, and 5) the functional inactivation of epidermal Langerhans cells in this process. The exposure of skin to UVR, therefore, causes a number of both local and systemic alterations to the normal host immune system. In spite of this seeming complexity and diversity of responses, our recent studies have established that each of the UVR-mediated changes is probably of equal importance to creating the UVR-induced immunocompromised state. Normal animals were exposed to low dose UVR radiation on their dorsal surfaces under conditions where a $3.0\;cm^2$ area of skin was physically protected from the light energy. Contact sensitization of these animals with DNFB, to either the irradiated or protected back skin, resulted in markedly reduced CH responses. This was observed in spite of a normal responsiveness following the skin sensitization to ventral surfaces of the UVR-exposed animals. Systemic treatment of the low dose UVR recipients with the drug indomethacin (1-3 micrograms/day) during the UVR exposures resulted in a complete reversal of the depressions observed following DNFB sensitization to "protected" dorsal skin while the altered responsiveness found in the group exposed to the skin reactive chemical through directly UVR-exposed sites was maintained. These studies implicate the importance of EC as effective APC in the skin and also suggest that some of the systemic influences caused by UVR exposure involve the production of prostaglandins. This concept was further supported by finding that indomethacin treatment was also capable of totally reversing the systemic depressions in CH responsiveness caused by high dose UVR exposure (30K joules/$m^2$) of mice. Attempts to analyze the cellular mechanisms responsible established that the spleens of all animals which demonstrated altered CH responses, regardless of whether sensitization was through a normal or an irradiated skin site, contained suppressor cells. Interestingly, we also found normal levels of T effector cells in the peripheral lymph nodes of the UVR-exposed mice that were contact sensitized through normal skin. No effector cells were found when skin sensitization took place through irradiated skin sites. In spite of such an apparent paradox, insight into the probable mechanisms responsible for these observations was provided by establishing that UVR exposure of skin results in a striking and dose-dependent blockade of the efferent lymphatic vessels in all peripheral lymph nodes. Therefore, the afferent phases of immune responses can apparently take place normally in UVR exposed animals when antigen is applied to normal skin. The final effector responses, however, appear to be inhibited in the UVR-exposed animals by an apparent block of effector cell mobility. This contrasts with findings in the normal animals. Following contact sensitization, normal animals were also found to simultaneously contain both antigen specific suppressor T cells and lymph node effector cells. However, these normal animals were fully capable of mobilizing their effector cells into the systemic circulation, thereby allowing a localization of these cells to peripheral sites of antigen challenge. Our results suggest that UVR is probably not a significant inducer of suppressor T-cell activity to topically applied antigens. Rather, UVR exposure appears to modify the normal relationship which exists between effector and regulatory immune responses in vivo. It does so by either causing a direct reduction in the skin's APC function, a situation which results in an absence of effector cell generation to antigens applied to UVR-exposed skin sites, inhibiting the capacity of effector cells to gain access to skin sites of antigen challenge or by sequestering the lymphocytes with effector cell potential into the draining peripheral lymph nodes. Each of these situations result in a similar effect on the UVR-exposed host, that being a reduced capacity to elicit a CH response. We hypothesize that altered DTH responses, altered alloresponses, and altered graft-versus-host responses, all of which have been observed in UVR exposed animals, may result from similar mechanisms.

  • PDF

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Spawning Behavior, Egg and Larvae Developments of Maroon Clownfish, Premnas biaculeatus (Maroon Clownfish, Premnas biaculeatus의 산란습성과 난 발생 및 자치어의 외부형태발달)

  • Kim, Jong-Su;Choi, Young-Ung;Rho, Sum;Yoon, Young-Seock;Jung, Min-Min;Song, Young-Bo;Lee, Chi-Hoon;Lee, Young-Don
    • Journal of Aquaculture
    • /
    • v.20 no.2
    • /
    • pp.96-105
    • /
    • 2007
  • A pair of maroon clownfishes with an indonesian native, reared in recirculation culture system to develope its aquaculture techniques. Courtship, spawning behavior, egg developments and rearing of the maroon clownfish larvae were documented. The larval development were described with illustrative figures. The spawning was occurred 8 times between Feburary and August 2004. The gravid female spawned during 15:00-20:00. The male mainly took care of the eggs supplying oxygen by water currents using their pectoral fins, anal fin and mouth. The fertilized eggs were separative-adhesive and oval in shape, and $1.99{\pm}0.03\;mm$ in longer diameter and $0.88{\pm}0.03\;mm$ in shorter diameter. The fertilized eggs were in deep-orange color. Cleavage occurred in 30 minutes after fertilization, and the egg reached 2 cells stage in 1 hour 10 minutes after fertilization at $27.0^{\circ}{\pm}0.5^{\circ}C$. The embryo was formed in 23 hours 40 minutes after fertilization. Hatching began in between $120{\pm}2$ hours and $150{\pm}12$ hours after fertilization at $27.0^{\circ}C$ in the incubator. Total length (TL) of the newly hatched larvae was 3.22 mm with mouth and anus opened. Ten days after hatching, mean TL of the larvae were 6.21 mm with 28 dorsal fin rays, 17 anal fin rays and 28 caudal fin rays. Nineteen days after hatching, mean TL of the larvae were 9.34 mm. At this stage the larva had three white bands on the body, and they began to feed on commercial diet.