• Title/Summary/Keyword: recirculating aquaculture system

Search Result 110, Processing Time 0.029 seconds

Characterization of Immobilized Denitrifying Bacteria Isolated from Municipal Sewage

  • Kim, Joong-Kyun;Kim, Sung-Koo;Kim, Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.756-762
    • /
    • 2001
  • As a component for a recirculating aquaculture system, a new strain of denitrifying bacterium was isolated from municipal sewage. The isolate was motile by means of one polar flagellum, catalase-positive, and a Gram-negative rod-shaped cell measuring $0.5-0.6{\mu}m$ in width and $1.3-1.9{\mu}m$ in length. The isolate was identified as Pseudomonas fluorescens and produced dinitrogen gas via the reduction of nitrate. The optimal growth conditions (pH, temperature, carbon source, and C/N ratio) of the isolate were found to be 6.8, $30^{\circ}C$, malate, and 3, respectively. Under optimal growth conditions of P. fluorescens, dinitrogen gas was first detected in the exponential growth phase, then a small amount of nitrite was developed and converted to dinitrogen gas in the stationary phase. Pseudomonas fluorescens cells were immobilized in modified polyvinyl alcohol (PVA) gel beads, and the maximum denitrification rate was measured as $36.6 {\mu}lN_2h^-1$ per bead with an optimum cell loading of $20mg {\mu}l^-1$ and $2\%$ sodium alginate added to the PVA gel. The operating stability of the modified PVA gel beads remained unchanged for up to 43 repeated batches.

  • PDF

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

Protein and Phosphorus Availabilities of Five Different Dietary Protein Sources in Juvenile Olive flounder (Paralichthys olivaceus) as Determined by Growth Performance and Phosphorus Retention

  • Choi, Se-Min;Kim, Kang-Woong;Wang, Xiaojie;Han, Kyung-Min;Bai, Sungchul C
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • The present study aims to evaluate protein and phosphorus availabilities of five different dietary protein sources during the 6-week feeding trial in juvenile olive flounder, Paralichthys olivaceus as determined by growth performance and phosphorus retention. Five diets containing blood meal (BM), poultry by-product (PBP), squid liver powder (SLP), feather meal (FM) and soybean meal (SM) were prepared by mixing a basal diet (BD) with one of five test ingredients at the ratio of 7 to 3. As a reference diet, BD contains three different protein sources such as white fish meal, casein and gelatin. After 2 weeks of the conditioning period, fish initially averaging 2.7$\pm$0.02g (mean$\pm$SD) were randomly distributed into each aquarium as a group of 30 fish reared in the recirculating system. Fish of triplicate groups were fed one of six experimental diets (BD+five test diet). After 6-week feeding trial, pro- tein efficency ratio (PER) of fish fed BM diet was the lowest in experiment groups. While fish fed PBP diet showed a significant higher PER as compared to the FM diet, and fish fed SLP diet and BD were a higher PER than did fish fed PBP diet. However, there was no significant difference in PER among fish fed SLP diet, BD and SM diet, and between SM diet and PBP diet. Phosphorus retention efficiency of bone (PR $E_{b}$) of fish fed BM diet was the lowest in all the diets, and fish fed FM diet showed a higher PE $R_{b}$ than fish fed BD and SM diet. However, there was no significant difference in PER among fish fed FM diet, SLP diet and PBP diet, and among SLP diet, PBP diet, SM diet and BD. These results indicate that SLP could be a suitable protein source for low pollution diets of olive flounder in the future fish feeds market. Furthermore, PBP and SM are available protein source to reduce P waste in the oliver flounder aquaculture with the use of proper mixture of other protein sources and more processing to improve protein availibility of these.ese.

Optimum Dissolved Oxygen Level for the Growth of the Israeli Strain of Common Carp, Cyprinus carpio in the Recirculating Water System (순환여과식 사육장치내에서 이스라엘계 잉어(Cyprinus carpio)의 성장을 위한 최적용존산소량)

  • KIM In-Bae;KIM Pyong-Kih
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.581-585
    • /
    • 1986
  • A growth experiment of the Israeli strain of common carp (Cyprinus carpio) under varying dissolved oxygen levels in the recirculating water system was conducted at the Fish Culture Experiment Station of the National Fisheries University of Pusan from August 28, 1985 to September 17, 1985. Five tanks with a capacity of $5m^3$ of water each were used under the same condition of water parameters except for dissolved oxygen levels which were designed to maintain at 2.0, 2.5, 3.0, 3.5 and 4.0 mg/l ranges. The weight of fish in the beginning was about 300g and each tank was stocked with 200kg of fish. DO level of 3.5mg/l was found to be the best level with a feed coefficient of 1.57 and a daily growth rate of $1.411\%$ whereas 4.mg/l showed a slightly decreased performance of 1.63 and $1.365\%$ respectively. The amounts of feed consumed in 3.5 and 4.0mg/l DO levels were almost the same. Below 3.0mg/l DO levels the growth rate markedly decreased. Furthermore, in 2.0 and 2.5 mg/l groups, the fish did not accept feed vigorously and after feeding the fish usually concentrated around the inflow point showing oxygen deficiency response, The experiment indicates that the DO range of 3.5 to 4.0mg/l is the optimum level for the best growth at $27.5^{\circ}C$. DO concentration above these levels is considered a waste of energy resulting in uneconomical performance, and on the other hand, below these levels, the carp certainly shows a poor growth performance.

  • PDF

Optimum Dissolved Oxygen Level for the Growth of Tilapia in the Recirculating Water System (순환여과식사육장치에서 틸라피아의 성장을 위한 최적용존산소량)

  • KIM In-Bae;WOO Young-Bae
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1988
  • A growth experiment of tilapia (offsprings of the hybrid between Oreochromis niloticus and O. mossambicus) under different dissolved oxygen levels in the recirculating water system was conducted at the Fish Culture Experiment Station of the National Fisheries University of Pusan from February 4 to March 5, 1986. Six tanks with a capacity of $1.8m^3$ of water each were used under the same condition of water parameters except for dissolved oxygen levels which were designated to maintain at 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mg/$\iota$. Each tank was stocked with 90 kg of fish each averaging 64 to 69 grams. The average water temperature during the course of the experiment was $22.5^{\circ}C$. The results obtained are summarized as follows: The food conversion efficiencies were very good, being 1.05-1.11 at 3.5, 3.0, 2.5 and 2.0 mg/$\iota$ DO levels without any significant differences among them, but at 4.0 mg/$\iota$ the F. C. was 1.39 and at 1.5 mg/$\iota$ it was 1.61 being very poor compared with the others. The daily growth rate performance was best at 3.5 mg/$\iota$ dissolved oxygen level followed by 3.0 and 2.5 mg/$\iota$ with slight differences while at 4.0 and 2.0 mg/$\iota$ DO levels the growths were significantly poor, and at 1.5 mg/$\iota$ DO level it was extremely poor. In 1.5 mg/$\iota$ group, the fish did not accept feed vigorously and after feeding the fish usually concentrated around the inflow point showing oxygen deficiency response. While at 4.0 mg/$\iota$ high feeding rates tended to waste significant amounts of feed while eating and led to water deterioration, and above these levels the results is considered to lead to a waste of energy with uneconomical performance. On the other hand, at and below 2.0 mg/$\iota$ DO level the tilapia certainly showed a poor growth performance. The experiment indicates that the DO range of 2.5$\~$3.5 mg/$\iota$ is the optimum level for the good growth performance.

  • PDF

Evaluation Model of Optimal Operating Conditions for Aquaponics Pretreatment Using Response Surface Methodology (반응표면법을 이용한 아쿠아포닉스 전처리조 최적 운전 조건 평가 모델)

  • Jisoo Kim;Geounwoo Park;Jinseo Choi;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.1
    • /
    • pp.32-40
    • /
    • 2024
  • The aim of this research was to apply a method designed to derive the factors influencing total ammonia removal when operating an additional pretreatment system at Aquaponics. The Box-Behnken method, among response surface analysis methods was used to characterize and determine the optimal nitrification conditions when operating the pretreatment system. Among the mathematically and statistically calculated prediction equations, the total ammonia nitrogen concentration Y1 measured on day 8 was derived as Y1=-195.8+2.23X1+42.9X2+47.5X3+0.1856X12-1.380X1X2-1.770X1X3, and the time taken to reach the maximum total ammonia nitrogen concentration during the experiment period was derived as Y2=271-5.04X1+60.5X2-64.8X3+0.1654X12+6.54X32-0.600X1X3-9.00X2X3. The coefficients of determination of the regression models of Y1 and Y2 were 93.99% and 94.46%, respectively. The modified coefficients of determination were also high, at 89.48% and 88.91%, respectively. The prediction coefficients of determination of Y1 and Y2, were 70.68% and 62.11%, respectively, which was relatively lower than that of Y1, but still indicated a reliable prediction performance.

Denitrification of Synthetic Wastewater in Submerged Biofilter (침지식 여과조를 이용한 합성 폐수의 탈질화)

  • 오승용;조재윤;김인배
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.335-346
    • /
    • 1997
  • Denitrification is one of the important processes of removing nitrate from in recirculating aquaculture systems. And this process is affected by many factors such as external organic carbon sources, hydraulic retention time (HRT), COD/NO3--N (C:N) ratio, etc. However, not many studies were done for the optimum conditions of denitrification in the recirculation system for aquaculture. Therefore, this study was conducted to find out the optimum removal condition of NO3--N using submerged denitrification biofilter. The combinations of two external organic carbon sources (glucose and methanol), two HRT (4 and 8-hour) and four differnent C : N ratios (3, 4, 5, 6) were tested. The removal efficiencies of NO3--N and total inorganic nitrogen (TIM) at 8-hour HRT were better than those at 4-hour's (P<0.05). The maximum removal efficiency of NO3--N by methanol (97.8%) was achieved at HRT and C : N ratio were 8-hour and 4.0 respectively. The efficiencies of methanol for the removal of NO3--N and TIN were always better than those of glucose (P<0.05). The maximum removal efficiencies of total inorgainc nitrogen (TIN) were gained at C : N ration of 5.0. The maximum removel efficiencies of TIN using methanol and glucose were 96.9% and 71.5% respectively. Anaerobic condition which is necessary for denitrification process was not made until the 8-hour HRT and higher C : N ratio (5.0). Removal of NO3--N at 4-hour HRT and C : N ration lower than 5.0 were inhibited by oxygen and/or low quantity of external organic carbon. Removal efficiencies of NO3--N were also inhibited by high C : N (6.0) ratio when HRT was 8-hour.

  • PDF

Organic Matter and Hydraulic Loading Effects on Nitrification Performance in Fixed Film Biofilters with Different Filter Media

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.277-286
    • /
    • 2003
  • Nitrification performance of fixed film biofilters using coarse sand, loess bead, or styrofoam beads in biofilter columns 1 meter high and 30cm in diameter were studied at different hydraulic and organic matter loading rates. Synthetic wastewater was supplied to the culture tank in order to maintain desired TAN concentrations in inlet water to biofilters. All the biofilters were conditioned 5 months before start of sampling. TAN and $NO_2-N$ conversion rates increased with an increase in the hydraulic loading rate (HLR). However, the improvement in biofilter performance was not linearly correlated to HLR in styrofoam bead filters. This is mainly due to the characteristics of the styrofoam beads used. TAN conversion rates of sand filters increased with the increase of HLR up to $200m^3/m^2$. per day. No increase in the TAN conversion rate was observed at the highest HLR since flooding on the media surface took place. HLR had a significant impact on the TAN conversion rates in loess bead filter up to the highest HLR tested (P<0.05). TAN conversion rates were much less at organic matter loading rates of 9 and 18kg $O_2/m^3$ per day than those without the addition of organic matter in styrofoam bead filters. The addition of glucose resulted in a reduction of the TAN conversion rate from 540 to 284g $TAN/m^3$ per day. No significant difference of TAN conversion rates between the two organic matter loading rates was found (p<0.05). This indicates that the impact of organic matter on nitrification becomes less and less sensitive with an increase in the COD/TAN ratio. At an organic matter loading rate of 9kg $O_2/m^3$. per day, a great reduction of TAN conversion rates was observed in sand filters and loess bead filters. Clearly, organic matter can be one of the most Important Impacting factors on nitrification. $NO_2-N$ conversion rates showed a similar trend for TAN. Based on the TAN and nitrite conversion rates, styrofoam beads showed the best performance among the three filter media tested. Also, the low gravity and price of styrofoam beads make the handling easier and more cost-effective for commercial application. The results obtained at the highest organic matter loading rates can be used in the biofilter design in recirculating aquaculture system.

Comparative Study on Growth and Yield of Far Eastern Catfish Silurus asotus and Leafy Vegetables Grown in Hybrid BFT-Aquaponics, Semi-RAS and Hydroponics (메기(Silurus asotus) 및 엽채류의 성장과 생산을 위한 Hybrid BFT 아쿠아포닉스(HBFT-AP), 반순환 양식(Semi-RAS) 및 수경재배(Hydroponics)의 비교 연구)

  • Lee, Dong-Hoon;Kim, Jin-Young;Lim, Seong-Ryul;Kim, Dal-Young;Kim, Kwang-Bae;Kim, Joo-Min;Kim, Jeong-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.482-495
    • /
    • 2019
  • This study compared the productivity of fish and vegetables grown using the hybrid biofloc technology-aquaponics (HBFT-AP), a semi-recirculating aquaculture system (SRAS), and hydroponics (HP). For the study of fish productivity (HBFT-AP vs. SRAS), fish were provided feed containing 3.0% monobasic potassium phosphate (MKP) for 18 weeks. After the 18-week feeding trial, the average weight of the sampled population (n=100) was not significantly different (P>0.05), while hematocrit (PCV, %), hemoglobin (Hb, g/dL), and plasma K (mEq/L) were significantly different (P<0.05) between the two groups (HBFT-AP: 47.83%, 15.48 g/dL, and 1.39 mEq/L; SRAS 34.83%, 11.81 g/dL, and 2.48 mEq/L). Leaf vegetable productivity (HBFT-AP vs. HP) was compared in three experiments (EXP 1-3), and slower growth was observed in both groups in EXP 2, in which pH was maintained at 5.0 or less throughout the experiment. During the 18-week feeding trial, total ammonia nitrogen (TAN), $NO_3-N$, and $PO_4-P$ levels increased with time in the HBFT-AP system, while the concentration of $NO_2-N$ remained below 0.1 mg/L throughout the study.

Comparison on Seedling Production of Marine Fishes between Recirculating and Running Seawater System (순환여과식과 유수식 사육시스템에 의한 해산어류 종묘생산 비교)

  • Chang Young Jin;Ko Chang Soon;Yang Han Soeb
    • Journal of Aquaculture
    • /
    • v.8 no.2
    • /
    • pp.117-131
    • /
    • 1995
  • In order to improve the present running seawater system for seedling production of marine fishes, rearing experiments with the juveniles of black seabream (Acanthopagrus schlegeli) and oblong rockfish (Sebastes oblongus) were conducted. The recirculating seawater system (F) equipped with the rotating biological contactors and the running seawater system (R) were used. Environmental factors, growth, survival rate and rearing density of the fish were compared between two systems during the experimental period. In the rearing experiment of black seabream, water temperature in F was fluctuated with surrounding air temperature and was higher than that in R. Specific gravity of the rearing seawater in F was relatively stable in the range of 1.0252 to 1.0266, while that in R was greatly fluctuated. pH in F turned out to be 7.51, but pH in R was similar to that in the natural seawater. Dissolved nitrite and nitrate in F were higher than those in R. While no significant differences in the growth of black seabream juveniles were recognized between two systems, survival rates of fishes in F were higher than those of fishes in R. In the rearing experiment of oblong rockfish, water temperature in F was higher than that in R. Specific gravity in F was slightly higher than that in R which showed relatively less fluctuation in the range of 1.0253 to 1.0270. pH in F turned out to be 7.96, but pH in R was similar to that in the natural seawater. Dissolved nitrite and nitrate in F were higher than those in R, but ammonia was lower in F. The juveniles of oblong rockfish reared in F grew significantly faster in their total length and body weight than those in R (P<0.05). However, survival rates of fishes between two systems showed no significant differences.

  • PDF