• Title/Summary/Keyword: receiving reservoir

Search Result 17, Processing Time 0.024 seconds

Structure and Change Pattern of Gijang Mountain Fortress and its Receiving Reservoir (기장산성 집수지의 구조와 변화양상)

  • Hwang, Dae-Il;Jung, Dae-Bong;Park, Jun-Hyun
    • Journal of architectural history
    • /
    • v.22 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper looked into the structure of and changes in the building process of Gijang mountain fortress and its receiving reservoir by analyzing data from an excavation investigation. The structure of the receiving reservoir may be classified into a flat form, stone sheath, floor facility, wall facility, and entry and exit facility. The flat form of the Gijang mountain fortress and receiving reservoir is round. Concerning the sectional form, the wall was obliquely excavated in the trapezoid. As a stone sheath building method, it was built by undertaking a range work of oblong stone materials in a clockwise direction on a stamped soil floor. Then, it was treated with stamping using double layers of gray clay and yellowish brown clay on the floor and the wall. Also, in a space between the stamped layers on the floor, herbal plants and a straw mat were laid for waterproofing as well as to prevent sinking. As an entry and exit facility, two facilities were confirmed symmetrically in the southeast and in the northwest. It is believed that they were built additionally during rebuilding after the initial construction. The building process was revealed to have been carried out in 8 stages. Given the structure and excavated remains, the building period is estimated to be the early to mid 7th century for the initial building, the later 9th to 11th centuries for the primary rebuilding, and the later 16th to early 17th centuries for the secondary rebuilding.

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.

Characterization of Water Pollution Load in an Artificial Lake Irregularly Receiving River Water (유지용수 공급형 인공저수지의 수질오염부하 특성 연구)

  • Cho, Woong-Hyun;Jeong, Byung-Gon;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The first objective of this study was to investigate water pollution status of Meejae Reservoir, Kunsan, irregularly receiving river water for agricultural and recreational purposes. The second objective of the study was to compare nutrient pollution loads of three nutrient sources: sediment leaching, non-point sources and the receiving water. Water analysis results showed that eutrophication was a concern especially in summer and the calculated TSI (secchi depth), TSI (chlorophyll-a), and TSI (TP) were 53.6, 57.7 and 56.7, respectively. Although there was no significant difference in seasonal mean values of sediment T-N, sediment T-P and sediment organic content, mean differences were found for sampling points. However, T-N and T-P sediment release flux showed seasonal mean differences, while showing no mean difference for sampling points. Water T-N data proportionally correlated with sediment T-N and sediment organic content data, while no statistical correlation was found for water T-P data. Comparison of nutrient loads calculated from three sources showed that the highest T-N load was occurred from the receiving (pumped) water while T-P loads of the receiving water and sediment release flux were similar. The first solution would be considered for the receiving water to improve the water quality of Meejae Reservoir. Reduction of nutrient flux from the sediment would be then tried as the second alternative solution.

Watershed Modeling Research for Receiving Water Quality Management in Hwaseong Reservoir Watershed (화성호 유역의 수질관리를 위한 유역모델링 연구)

  • Jang, Jae-Ho;Kang, Hyeong-Sik;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • HSPF model based on BASINS was applied for the Hwaseong Reservoir watershed (HRW) to evaluate the feasibility of water quality management. The watershed was divided into 45 sub-basins considering various watershed environment. Streamflow was calibrated based on the measured meteorological data, discharge data of treatment plants and observed streamflow data for 2010 year. Then the model was calibrated against the field measurements of water qualities, including BOD, T-N and T-P. In most cases, there were reasonable agreements between observed and predicted data. The validated model was used to analyze the characterization of pollutant load from study area. As a result, Non-point source pollutant loads during the rainy season was about 66~78% of total loads. In rainy-season, water quality parameters depended on precipitation and pollutant loads patterns, but their concentration were not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. As another result of evaluation for load duration curves, in order to improve water qualities to the satisfactory level, the watershed managements considering both time-variant and pollution sources must be required in the HRW. Overall, it was found that the model could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

Investigation on the Relationship between Land Use and Water Quality with Spatial Dimension, Reservoir Type and Shape Complexity (공간성, 호소유형 및 형태복잡도 지수를 이용한 토지이용과 호소수질의 관계 연구)

  • Lee, Sang-Woo;Hwang, Soon-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.6 s.119
    • /
    • pp.1-9
    • /
    • 2007
  • Land use types within a watershed closely are related with the water quality characteristics of receiving water bodies. Despite of a numerous studies suggesting a strong relationship between water quality and land use, there have been increasing concerns about the geographical variation and a lack of spatial integration in that relationship, which are essential to implementing these findings into land use planning and management. In the meantime, edges mediate the material flux between adjacent systems. This mediating effect of edges is strongly related to the complexity of their shapes. Land use activities within a watershed have a direct impact on the water quality of adjacent aquatic systems, and hydrological processes carry residuals from watershed into adjacent aquatic ecosystems through the edges. Therefore, the geometry of reservoirs theoretically affects the relationship between land uses in the watershed and the quality of receiving bodies of water. In this light, this study integrates the geo-spatial dimensions of land uses in the watershed using GIS and landscape indices in order to explore the relationship between land uses and water quality. Water quality characteristics, land uses and geometry of 133 randomly sampled reservoirs were correlated, based on buffer zones and types of reservoirs. The findings showed that land uses, particularly urban land uses, significantly affect water quality characteristics including BOD, COD, TN and TP, and geometry of reservoirs reduces the concentration of pollutant and nutrients in reservoirs. One of results indicates that the relationship between land use and water quality and effects of spatial dimension may vary with types of reservoirs and pollutants. These results suggest that lakeshore areas are important, particularly for TN reduction and call for a caution to land use activities nearby shoreline areas for sustaining better water quality.

Estimation of Pollutant Load to Yongdam Reservoir Considering Rainfall Effect (강우의 영향을 고려한 용담호 유입오염부하량 산정)

  • Lee, Eun-Hyong;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.521-531
    • /
    • 2003
  • Pollutant load to Yongdam Reservoir considering rainfall effect is estimated using data collected during dry and wet days between Dec 1998 and Oct. 1999. Limit of significant rainfall was assumed to be as 10 mm/day and numbers of days of significant rainfall for each month were counted using 10 years of meteorological data of the study area. Water quality input concentrations were estimated by taking weighted averages of concentrations in dry and wet days in each month. The resulting concentrations were used as inputs for water quality modeling of Yongdam Reservoir. When rainfall effect was included average reservoir concentrations of BOD, TN and TP were increased by 70%, 5% and 27%, respectively Considering the fact that Korea is under the significant influence of monsoon effect during the summer, it should be important to include rainfall effect in estimating pollutant input to receiving waters. This method is expected to increase reliability of annual water quality modeling results by providing realistic input data.

Effects of Autotransfusion using Cell Saver in Cardiac Surgery (개심술시 Cell Saver 를 이용한 자가수혈의 효과)

  • 정경영
    • Journal of Chest Surgery
    • /
    • v.23 no.2
    • /
    • pp.260-267
    • /
    • 1990
  • During a eight month period[from December, 1988 to July, 1989], a series of 35 adults undergoing redo-valve replacement or coronary artery bypass grafting was selected to an autotransfusion group[n=10] or a control group[n=25]. The Cell Saver System[Haemonetics Corp., Graintree, Mass] was employed for autotransfusion. With this system, all blood shed in the operative field before and after cardiopulmonary bypass and remained in cardiotomy reservoir after cardiopulmonary bypass was aspirated by means of a locally heparinized collecting system. After the salvaged blood was centrifuged, the resulting red cell concentrate subsequently reinfused. The patients receiving autologous blood required significantly less banked homologous blood than their controls[3213k1020 ml and 506051931 ml, respectively: p=0.001] There were no clinical infections in the autotransfusion group, although 40% of the cultures of processed blood were positive. And there was no apparent intergroup difference of the clinical and the hematologic and hemostatic laboratory findings. We conclude that autotransfusion using cell saver is effective for saving the homologous blood transfusion in cardiac surgery.

  • PDF

Gravity monitoring of $CO_2$ storage in a depleted gas filed: A sensitivity study (채굴후 가스전내 $CO_2$ 저장소의 중력 모너터링: 감도 연구)

  • Sherlock, Don;Toomey, Aoife;Hoversten, Mike;Gasperikova, Erika;Dodds, Kevin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • In 2006, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) plans to undertake (subject to receiving the necessary approvals) a Pilot program for $CO_2$ storage within a depleted gas reservoir. The Otway Basin Pilot Program (OBPP) aims to demonstrate that subsurface $CO_2$ storage is both economically and environmentally sustainable in Australia. This will be the first $CO_2$ storage program in the world to utilise a depleted gas reservoir and, hence, the experience gained will be a valuable addition to the range of international $CO_2$ storage programs that are underway or being planned. A key component of the OBPP is the design of an appropriate geophysical monitoring strategy that will allow the subsurface migration of the $CO_2$ plume to be tracked and to verify that containment has been successful. This paper presents the results from modelling the predicted gravity response to $CO_2$ injection into the Otway Basin reservoir, where the goal was to determine minimum volumes of $CO_2$ that may be detectable using non-seismic geophysical techniques. Modelling results indicate that gravity measurements at 10 m spacing within the existing observation well and the planned $CO_2$ injection well would provide excellent vertical resolution, even for the smallest $CO_2$ volume modelled (10000 tonnes), but resolving the lateral extent of the plume would not be possible without additional wells at closer spacing.

Alternatives for The Stable Operation of Wastewater Treatment Plant in Combined Sewer System during Wet Weather (합류식 하수관거 지역에서 강우시 하수처리장 적정운영방안에 관한 연구)

  • Lee, Doo-jin;Shin, Eung-Bai;Hong, Chul-ui;Ahn, Se-young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.132-144
    • /
    • 2004
  • The purpose of this study was to evaluate alternatives for stable operation of WWTP(Wastewater Treatment Plant) with a higher rate of inflows and a higher concentration of pollutants during wet weather to minimize the pollution loads being discharged into receiving waters. 3Q(Q: dry weather flow) of a base flow is normally intercepted and flows into WWTP as it was current practice. It is revealed by simulation that the bypassing alternative of 1Q through secondary treatment and 2Q into the stream after primary treatment was as good as it is expected. The bypass pollution loads were in the range of 23.9 ~ 38.5 % of the total loads flowing into the WWTP indicating that the bypassed flows need an extra treatment such as stormwater detention reservoir, high-rate coagulation with sedimentation, and step-feed. The high-rate coagulation with sedimentation was the most effective with respect to removal of the pollution loads.