• Title/Summary/Keyword: rebinning

Search Result 5, Processing Time 0.027 seconds

Performance Comparison of Reconstruction Algorithms for Fan-Beam Computerized Tomography (Fan-Beam CT 영상 재구성 알고리즘 성능 비교)

  • 이상철;조민형;이수열
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • In this paper, we have compared the direct fan-beam reconstruction method with the rebinning method in terms of computation time and spatial resolution using computer simulation. As a result, the direct fan-beam method is superior to the rebinning method in the spatial resolution though the former needs longer computation time. However, if we adopt the quarter-detector-offset technique to improve the spatial resolution, the rebinning method outperforms the direct fan-beam method. The computation times have been evaluated using the fast algorithms optimized to reduce the number of interpolation calculations at the back-projection, and the spatial resolutions have been compared using the computer generated phantoms.

  • PDF

Rebinning-Based Deterministic Image Reconstruction Methods for Compton Camera (컴프턴 카메라를 위한 재배열 기반 확정론적 영상재구성법)

  • Lee, Mi-No;Lee, Soo-Jin;Seo, Hee;Nguyen, Van-Giang
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • While Compton imaging is recognized as a valuable 3-D technique in nuclear medicine, reconstructing an image from Compton scattered data has been of a difficult problem due to its computational complexity. The most complex and time-consuming computation in Compton camera reconstruction is to perform the conical projection and backprojection operations. To alleviate the computational burden imposed by these operations, we investigate a rebinning method which can convert conical projections into parallel projections. The use of parallel projections allows to directly apply the existing deterministic reconstruction methods, which have been useful for conventional emission tomography, to Compton camera reconstruction. To convert conical projections into parallel projections, a cone surface is sampled with a number of lines. Each line is projected onto an imaginary plane that is mostly perpendicular to the line. The projection data rebinned in each imaginary plane can then be treated as the standard parallel projection data. To validate the rebinning method, we tested with the representative deterministic algorithms, such as the filtered backprojection method and the algebraic reconstruction technique. Our experimental results indicate that the rebinning method can be useful when the direct application of existing deterministic methods is needed for Compton camera reconstruction.

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

Development of Regularized Expectation Maximization Algorithms for Fan-Beam SPECT Data (부채살 SPECT 데이터를 위한 정칙화된 기댓값 최대화 재구성기법 개발)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Soo-Jin;Kim, Kyeong-Min;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.464-472
    • /
    • 2005
  • Purpose: SPECT using a fan-beam collimator improves spatial resolution and sensitivity. For the reconstruction from fan-beam projections, it is necessary to implement direct fan-beam reconstruction methods without transforming the data into the parallel geometry. In this study, various fan-beam reconstruction algorithms were implemented and their performances were compared. Materials and Methods: The projector for fan-beam SPECT was implemented using a ray-tracing method. The direct reconstruction algorithms implemented for fan-beam projection data were FBP (filtered backprojection), EM (expectation maximization), OS-EM (ordered subsets EM) and MAP-EM OSL (maximum a posteriori EM using the one-step late method) with membrane and thin-plate models as priors. For comparison, the fan-beam protection data were also rebinned into the parallel data using various interpolation methods, such as the nearest neighbor, bilinear and bicubic interpolations, and reconstructed using the conventional EM algorithm for parallel data. Noiseless and noisy projection data from the digital Hoffman brain and Shepp/Logan phantoms were reconstructed using the above algorithms. The reconstructed images were compared in terms of a percent error metric. Results: for the fan-beam data with Poisson noise, the MAP-EM OSL algorithm with the thin-plate prior showed the best result in both percent error and stability. Bilinear interpolation was the most effective method for rebinning from the fan-beam to parallel geometry when the accuracy and computation load were considered. Direct fan-beam EM reconstructions were more accurate than the standard EM reconstructions obtained from rebinned parallel data. Conclusion: Direct fan-beam reconstruction algorithms were implemented, which provided significantly improved reconstructions.

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.