• Title/Summary/Keyword: rebar corrosion

Search Result 241, Processing Time 0.022 seconds

Investigation of the steel rebar corrosion using embeddable solid state reference electrode in marine environments (해양 환경에서 매립형 고체 기준 전극을 사용한 철근 부식 조사)

  • Subbiah, Karthick;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.57-58
    • /
    • 2022
  • Reinforced concrete (RC) structures play a significant role in the construction industries. An embeddable solid-state reference electrode (ESSRE) was used to evaluate the corrosion status of steel rebar in the concrete of various cover thicknesses that exposed to the maritime environment (3.5 % NaCl) in this study. From the open circuit potential measurement (OCP), the passive state, the corrosion uncertainty, and the 90% probability of corrosion state of the steel rebars in the concrete were monitored by ESSRE. From the electrochemical impedance spectroscopy (EIS) method, severe corrosion was observed at the exposure period of 1510, 1847, 2350, and 3020 h for C10, C15, C20, and C30 concrete, respectively. The results confirm that the ESSRE can be useful to identify the corrosion occurrence and severe corrosion of steel rebar embedded in different cover depth concrete structures.

  • PDF

The properties of hybrid FRP rebar for concrete structures (콘크리트 보강용 하이브리드 FRP 리바의 특성)

  • 원종필;박찬기;황금식;윤종환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration. It is FRP rebar that is developed to solve problem of such steel rebar. FRP rebar in concrete structures should be used as a substitute of steel rebars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP rebar have only linearly elastic behavior; whereas, steel rebar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP rebars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse in required. The main objective of this study was to develop new type of hybrid FRP rebar. The manufacture of the hybrid FRP rebar was achieved pultrusion, braiding and filament winding techniques. Tensile and interlaminar shear test results of hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

  • PDF

Experimental and computational insights into the adsorption of a hydrazone-based heterocyclic compound on steel rebar in synthetic concrete pore solution (합성 콘크리트 공극 솔루션에서 철근에 히드라존 기반 헤테로고리 화합물의 흡착에 대한 실험 및 계산 통찰력)

  • Lgaz, Hassane;Karthick, Subbiah;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.73-74
    • /
    • 2022
  • The corrosion inhibitive effect of a new hydrazone-based heterocyclic compound for steel in simulated concrete pore solution with 3.5 wt.% sodium chloride was investigated by experimental and computational techniques. Electrochemical studies, up to 30 days of immersion, and surface analysis (X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscope (SEM)) were performed to assess the corrosion protection abilities of investigated compound for steel rebar. Results showed that adding the organic compound to the chloride contaminated concrete pore solution decreased the corrosion rate of the steel rebar thanks to the effective adsorption of inhibitor molecules. After 30 days of immersion of steel rebar in inhibited chloride contaminated synthetic concrete pore solution, the inhibition efficiency exceeded 80% at low concentration of 1 mmol/L. Computational studies by Density Functional based Tight Binding (DFTB) method revealed the formation of covalent bonds between the hydrazone molecule and the iron surface.

  • PDF

Experimental Study of Bond Characteristics on Slab Reinforcement Corroded Before and After Casting (타설 전과 후에 부식시킨 슬래브 시험체의 철근 부착특성에 관한 실험적 연구)

  • Kim, Dae-Il;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1035-1040
    • /
    • 2001
  • Recently, Sea-sand containing high levels of chloride is being applied to on reinforced concrete structures due to the exhaustion of river-sand and environmental problems, which affects directly corrosion of rebar in the RC structures. In this paper, characteristics of corroded rebar before and after casting were studied. Test results showed that bond strength of rebar corroded after casting was decreased with increase of corrosion level more rapidly than that of rebar corroded before casting.

  • PDF

Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR

  • Sun, Yijie;Shi, Bin;Chen, Shen-En;Zhu, Honghu;Zhang, Dan;Lu, Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • Optical fiber Brillouin sensor in a coil winding setup is proposed in this paper to measure the expansion deformation of a concrete column with a central rebar subjected to accelerated corrosion. The optical sensor monitored the whole dynamic corrosion process from initial deformation to final cracking. Experimental results show that Brillouin Optical Time Domain Reflectometer (BOTDR) can accurately measure the strain values and identify the crack locations of the simulated reinforced concrete (RC) column. A theoretical model is used to calculate the RC corrosion expansive pressure and crack length. The results indicate that the measured strain and cracking history revealed the development of the steel bar corrosion inside the simulated RC column.

Corrosion Level Measurement Technique for RC Reinforcement Using Non-Destructive Test Methods (비파괴기법을 이용한 철근 콘크리트 벽체 철근의 부식률 예측기법)

  • Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • In order to measure corrosion level of reinforcement rebar in RC structures, non-destructive test methods which are concrete surface current density method and infrared thermographic technique were employed to measure corrosion levels. Experimental test parameters were various levels of corrosion states(0, 1, 3, 5, 7% of weight loss) and concrete cover depth(30 mm, 40 mm) and two different reinforcing rebar arrangements. The larger amount of concrete surface current density, the higher corrosion level in reinforcement rebar. The laboratory conditions which are ambient temperature and humidity have negligible effect on the infrared thermographical data. After analysis of current density and temperature distribution from concrete surface, corrosion level of reinforcement rebar embedded in concrete can be measured qualitatively based on the amount of electric current and heat flux.

Assessment of In-Situ Solid-State Reference Electrode for Monitoring Corrosion of Steel Rebar in Simulated Concrete Environments (모의 콘크리트 환경에서 강철 철근의 부식을 모니터링하기 위한 현장 고체 기준 전극 평가)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.281-282
    • /
    • 2023
  • The solid-state reference electrodes made of polyaniline-coated MnO2 (SSRE-PAM) and their electrochemical characteristics were studied in simulated concrete pore solutions (SCPS) containing 0 and 3.5% NaCl. Saturated calomel electrodes (SCE) have been used to conduct electrochemical studies on the stability behavior of SSRE-PAM. Open circuit potential (OCP) and potentiodynamic polarization techniques were used to assess the corrosion performance of steel rebar exposed in SCPS with 0 and 3.5% NaCl using SSRE-PAM. The results demonstrate that the SSRE-PAM was capable of identifying steel rebar in a concrete environment that was either passive or active. Potentiodynamic polarization parameters such as Ecorr and Icorr for steel rebar in SCPS containing 0 and 3.5%)NaCl are greater than that of the passive condition (0% NaCl). All the studies validate the importance of using SSRE-PAM for corrosion monitoring applications in concrete structures.

  • PDF

Corrosion Characteristics of hot rolled and thermo-mechanically treated steel rebar in concrete pore solution (콘크리트 기공 솔루션에서의 열간 압연 및 열 기계 처리 철근의 부식 특성)

  • Lee, Han-Seung;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.202-203
    • /
    • 2018
  • Chemistry and microstructure of steel reinforcement bars play an important role to control the corrosion in concrete environments. In present study, we have chosen two different microstructure of steel rebars produced from companies and assessed their corrosion characteristics in simulated concrete pore (SCP) solution with prolonged exposure periods. Hot rolled steel rebar showed more corrosion resistance compare to thermo-mechanically treated (TMT) one. The growth of passive is greater in hot rolled (A) than TMT (B) due to orientation of microstructure. TMT steel rebar exhibit distorted microstructure with many micro cells which enhances the galvanic coupling and induce the deterioration while on the other hand hot rolled rebars exhibit fine grain boundary which responsible in growth of uniform, adherent and protective passive film resultant improved impedance was observed.

  • PDF

Role of chloride ions with Zwitterions and phosphate groups on the improvement of the passive film in alkaline environment (알칼리성 환경에서 부동태 피막 개선에 대한 양쪽성 이온 및 인산염 그룹을 갖는 염화물 이온의 역할)

  • Tran, Duc Thanh;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.43-44
    • /
    • 2022
  • In this study, the optimum amount of chloride ions is used to collaborate with hybrid corrosion inhibitor for carbon steel rebar treatment in simulated pore concrete (SCP) solution is discovered. The corrosion inhibition performance of hybrid inhibitors is carried on by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PP). The highest corrosion inhibition resistance is found in case of LP-C2 after 240 h exposure. Surface studies including scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to figure out the surface morphology of the steel rebar treated with hybrid inhibitors in order to collaborate well with electrochemical studies. Anodic type inhibition action was confirmed by potentiodynamic polarization study.

  • PDF