• 제목/요약/키워드: real-world dataset

검색결과 148건 처리시간 0.024초

Impact of Exchange Rate Shocks, Inward FDI and Import on Export Performance: A Cointegration Analysis

  • NGUYEN, Van Chien;DO, Thi Tuyet
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권4호
    • /
    • pp.163-171
    • /
    • 2020
  • The study aims to examine the effects of inward every presence of foreign investment, import, and real exchange rate shocks on export performance in Vietnam. This study employs a time-series sample dataset in the period of 2009 - 2018. All data are collected from the General Statistics Office of Ministry of Planning and Investment in Vietnam, World Development Indicator and Ministry of Finance, State Bank of Vietnam. This study employs the Augmented Dickey-Fuller test and the vector error correction model with the analysis of cointegration. The results demonstrate that a higher value of import significantly accelerates export performance in the short run, but insignificantly generates in the long run. When the volume of registered foreign investment goes up, the export performance will predominantly decrease in the both short run and long run. Historically, countries worldwide are more likely to devaluate their currencies in order to support export performance. According to the study, the exchange rate volatility has an effect on the external trade in the long run but no effect in the short run. Finally, Vietnam's export performance converges on its long-run equilibrium by roughly 6.3% with the speed adjustment via a combination of import, every presence of foreign investment, and real exchange rate fluctuations.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.

Classification of Gravitational Waves from Black Hole-Neutron Star Mergers with Machine Learning

  • Nurzhan Ussipov;Zeinulla Zhanabaev;Almat, Akhmetali;Marat Zaidyn;Dana Turlykozhayeva;Aigerim Akniyazova;Timur Namazbayev
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권3호
    • /
    • pp.149-158
    • /
    • 2024
  • This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hol-eneutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron starblack hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog (GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW detection.

A method of generating virtual shadow dataset of buildings for the shadow detection and removal

  • Kim, Kangjik;Chun, Junchul
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.49-56
    • /
    • 2020
  • Detecting shadows in images and restoring or removing them was a very challenging task in computer vision. Traditional researches used color information, edges, and thresholds to detect shadows, but there were errors such as not considering the penumbra area of shadow or even detecting a black area that is not a shadow. Deep learning has been successful in various fields of computer vision, and research on applying deep learning has started in the field of shadow detection and removal. However, it was very difficult and time-consuming to collect data for network learning, and there were many limited conditions for shooting. In particular, it was more difficult to obtain shadow data from buildings and satellite images, which hindered the progress of the research. In this paper, we propose a method for generating shadow data from buildings and satellites using Unity3D. In the virtual Unity space, 3D objects existing in the real world were placed, and shadows were generated using lights effects to shoot. Through this, it is possible to get all three types of images (shadow-free, shadow image, shadow mask) necessary for shadow detection and removal when training deep learning networks. The method proposed in this paper contributes to helping the progress of the research by providing big data in the field of building or satellite shadow detection and removal research, which is difficult for learning deep learning networks due to the absence of data. And this can be a suboptimal method. We believe that we have contributed in that we can apply virtual data to test deep learning networks before applying real data.

제한된 델로네 삼각분할을 이용한 공간 불확실한 영역 탐색 기법 (Detecting Uncertain Boundary Algorithm using Constrained Delaunay Triangulation)

  • 조성환
    • 한국측량학회지
    • /
    • 제32권2호
    • /
    • pp.87-93
    • /
    • 2014
  • 지적 필지를 구성하고 있는 폴리곤 집합은 현실세계의 국토를 반영하는 가장 기반이 되는 데이터 집합이다. 따라서 지적 필지는 서로 간에 겹쳐있거나 공백을 가지지 않는 위상적 무결성이 보장되어야하는 데이터이다. 하지만, 여러 가지 이유로 필지들 간의 겹침과 공백의 문제가 발생하고 있고, 이러한 경우 폴리곤의 경계들은 주변의 폴리곤과 정확하게 인접하고 있지 못하기 때문에 의도하지 않은 겹침 영역과 공백 영역이 생산되고 있다. 이와 같이 정확하게 인접되어 있지 않은 경계가 불확실한 모서리를 하나 이상 포함하고 있는 경우, 이 폴리곤을 불확실한 영역이라고 부른다. 본 논문에서는 이러한 영역을 탐색하기 위한 TTA 기법을 제안하고자 한다. TTA 처리 순서는 우선 폴리곤 데이터 집합으로부터 포인트와 폴리라인을 추출하여 제한된 델로네 삼각분할을 수행한다. 다음으로 각 삼각형마다 데이터 집합과 중첩되는 면의 수를 세어 삼각형에 태깅을 수행한다. 태깅 값이 0 또는 1 이상인 삼각형을 추출한 후 연결성을 가지고 있는 삼각형끼리 병합을 수행하여 위상적 모순이 있는 영역들을 발견한다. 본 실험에서는 제안하는 알고리즘을 자동화하여 실세계에서 경계가 교차하는 지적 데이터에 적용하여 실험을 하였다.

준지도 지지 벡터 회귀 모델을 이용한 반응 모델링 (Response Modeling with Semi-Supervised Support Vector Regression)

  • 김동일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.125-139
    • /
    • 2014
  • 본 논문에서는 준지도 지지 벡터 회귀 모델(semi-supervised support vector regression)을 이용한 반응 모델링(response modeling)을 제안한다. 반응 모델링의 성능 및 수익성을 높이기 위해, 고객 데이터 셋의 대부분을 차지하는 레이블이 존재하지 않는 데이터를 기존 레이블이 존재하는 데이터와 함께 학습에 이용한다. 제안하는 알고리즘은 학습 복잡도를 낮은 수준으로 유지하기 위해 일괄 학습(batch learning) 방식을 사용한다. 레이블 없는 데이터의 레이블 추정에서 불확실성(uncertainty)을 고려하기 위해, 분포추정(distribution estimation)을 하여 레이블이 존재할 수 있는 영역을 정의한다. 그리고 추정된 레이블 영역으로부터 오버샘플링(oversampling)을 통해 각 레이블이 없는 데이터에 대한 레이블을 복수 개 추출하여 학습 데이터 셋을 구성한다. 이 때, 불확실성의 정도에 따라 샘플링 비율을 다르게 함으로써, 불확실한 영역에 대해 더 많은 정보를 발생시킨다. 마지막으로 지능적 학습 데이터 선택 기법을 적용하여 학습 복잡도를 최종적으로 감소시킨다. 제안된 반응 모델링의 성능 평가를 위해, 실제 마케팅 데이터 셋에 대해 다양한 레이블 데이터 비율로 실험을 진행하였다. 실험 결과 제안된 준지도 지지 벡터 회귀 모델을 이용한 반응 모델이 기존 모델에 비해 더 높은 정확도 및 수익을 가질 수 있다는 점을 확인하였다.

라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계 (Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy)

  • 김은후;배종수;오성권
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성 (Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data)

  • 주진우;양지훈
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.133-138
    • /
    • 2006
  • 부부분불완전 데이터(Partially Missing Data) 또는 데이터의 속성 값이 표현되는 정도의 깊이가 서로 다른 데이터를 학습하는데 있어서 속성값계층구조(Attribute Value Taxonomy, AVT)를 기반으로 학습하면 기존의 학습 알고리즘을 통해 얻은 결과보다 정확하고 간결한 분류기를 얻을 수 있다는 사실이 밝혀졌다. 하지만 이러한 속성값계층구조는 처음부터 전문가 또는 데이터 도메인에 대한 지식을 가지고 있는 사람에 의해 만들어져 제공되어야 한다. 이러한 수작업을 통한 속성값계층구조를 생성하기 위해서는 많은 시간이 걸리며 생성과정에서 오류가 발생할 수 있다. 또한 데이터 도메인에 따라서 속성값계층구조를 제공할 전문가가 부재한 경우가 있다. 이러한 배경 아래 본 논문은 유전자 알고리즘을 통해 자동으로 근 최적의 속성값계층구조를 생성하는 알고리즘(GA-AVT-Learner)을 제안한다. 본 논문의 실험은 다양한 실제 데이터를 가지고 GA-AVT-Learner로 생성한 속성값계층구조를 다른 속성값계층구조와 비교하였다. 따라서 GA-AVT-Learner에 의해 생성된 속성값계층구조가 정확하고 간결한 분류기를 제공함을 보이고, 불완전데이터 처리에 있어서도 높은 효율을 보임을 실험적으로 증명하였다.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.39-46
    • /
    • 2024
  • 많은 연구자들이 다양한 모델을 이용하여 물의 수질을 평가하기 위해 노력하고 있다. 평가 모델에는 결측값이 없는 데이터셋이 필요하지만, 관측 데이터셋에는 결측값이 다수 포함되는 것이 현실이다. 단순히 결측값을 삭제하는 방법은 경우에 따라 기저 데이터의 분포를 왜곡시키고 모델의 예측성능에도 편의(bias)를 불러올 위험성이 있다. 본 연구에서는 수질 데이터의 결측값 처리에 적합한 기법을 탐색하기 위해, 기존의 KNN과 MICE Imputation, 그리고 생성형 신경망 모델인 Autoencoder와 Denoising Autoencoder를 기반으로 몇 가지 대치 기법을 실험하였다. 실험 결과, KNN과 MICE Imputation의 결과를 평균한 Combined Imputation이 실측치에 가장 가깝게 값을 추정하였으며, 이 기법을 적용하여 결측값을 처리한 관측 데이터셋을 support vector machine과 ensemble 기반의 분류 모델로 평가한 결과, 결측값을 삭제했을 때에 비해 Accuracy, F1 score, ROC-AUC score, 그리고 MCC(Mathews Correlation Coefficient) 지표가 향상되었다.