• 제목/요약/키워드: real-time visual tracking

검색결과 109건 처리시간 0.026초

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

가상링크 기반의 ROBOKER 머리의 실시간 대상체 추종 성능 향상을 위한 신경망 제어 (Neural Network Compensation for Improvement of Real-Time Moving Object Tracking Performance of the ROBOKER Head with a Virtual Link)

  • 김동민;최호진;이근형;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.694-699
    • /
    • 2009
  • This paper presents the implementation of the real-time object tracking control of the ROBOKER head. The visual servoing technique is used to track the moving object, but suffers from ill-estimated Jacobian of the virtual link design. To improve the tracking performance, the RBF(Radial Basis Function) network is used to compensate for uncertainties in the kinematics of the robot head in on-line fashion. The reference compensation technique is employed as a neural network control scheme. Performances of three schemes, the kinematic based scheme, the Jacobian based scheme, and the neural network compensation scheme are verified by experimental studies. The neural compensation scheme performs best.

칼만필터를 이용한 3-D 이동물체의 강건한 시각추적 (Robust Visual Tracking for 3-D Moving Object using Kalman Filter)

  • 조지승;정병묵
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험 (Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision)

  • 이운규;김동민;최호진;김정섭;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

랜덤한 시간 지연 요소를 갖는 영상 추적 시스템의 제어 (Control of Visual Tracking System with a Random Time Delay)

  • 오남규;최군호
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.21-28
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, a random time delay must be considered, because it works of a various time to get a result of an image processing in the system. It can be seen as an obstacle factor to a control of visual tracking in real system. In this paper, implementing two vision controllers each, first one is made up PID controller and the second one is consisted of a Smith Predictor, the possibility was shown to overcome a problem of a random time delay in a visual tracking system. A number of simulations and experiments were done to show the validity of this study.

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권4호
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

Voting based Cue Integration for Visual Servoing

  • Cho, Che-Seung;Chung, Byeong-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.798-802
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper, the robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is to use different models (CAD model etc.) known a priori. Also fusion of multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Because voting is a very simple or no model is needed for fusion, voting-based fusion of cues is applied. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters, namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

능동 카메라 기반의 물체 추적 제어기 설계 (Controller Design for Object Tracking with an Active Camera)

  • 윤수진;최군호
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

Fast Ray Reordering and Approximate Sibson Interpolation for Foveated Rendering on GPU

  • Kwon, Oh-Seok;park, Keon-kuk;Yoon, Joseph;Kim, Young-Bong
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.311-321
    • /
    • 2019
  • Virtual reality applications in Head-Mounted Displays require high frame rates and low latency rendering techniques. Ray tracing offers many benefits, such as high-quality image generation, but has not been utilized due to lower performance than rasterization. But that can obtain good result combined with gaze-tracking technology and human visual system's operation principle. In this paper, we propose a method to optimize the foveated sampling map and to maintain the visual quality through the fast voronoi nearest interpolation. The proposed method further reduces the computational cost that has been improved by the previous foveated sampling. It also smoothes the voronoi boundary using adaptive sibson interpolation, which was not possible in real-time. As a result, the proposed method can render real-time high-quality images with low visual difference.

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.