• Title/Summary/Keyword: real-time verification

Search Result 674, Processing Time 0.032 seconds

The Method for Online Estimating Utilization Rate of Motorway Service Area Under the V2I Data Condition (V2I 데이터 Online 고속도로 휴게소 이용률 추정 방법)

  • Chang, Hyunho;Lee, Jinsoo;Yoon, Byoungjo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.548-559
    • /
    • 2019
  • Purpose: Analysis method of V2I data driven motorway service area usage behavior to cope with manpower survey. Method: Segmentation of traveling state group and boundary using the distribution characteristics of traveling speed data of individual vehicles. Result: As a result of the verification, the use rate of resting places in lunchtime surged, and the boundary between the distribution status of the traffic speed data was clearly or unclear. Conclusion: The effect of the cost reduction is big because it can cope with the use of rest area survey by manpower and there is no limit in the time and space range of investigation. The dynamic utilization rate of each time sequence, such as a service area/drowsiness shelter/simple service area, with a V2I system, can be calculated. Identify illegal parking on highway section. Identify the unexpected situation in the road section. Identify the real-time service area utilization rate and congestion information.

Analysis of advancement model of 1st generation dairy smart farm based on Open API application (개방형 제어기반 1세대 낙농 스마트팜의 고도화 모델 적용 분석)

  • Yang, Kayoung;Kwon, Kyeong-Seok;Kim, Jung Kon;Kim, Jong Bok;Jang, Dong Hwa;Ko, miae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.180-186
    • /
    • 2020
  • ICT convergence using smart livestock is that in the first-generation dairy smart farm model, each device made by several manufacturers uses its own communication method, limiting the mutual operation of each device. This study uses a model based on open control technology to secure interoperability of existing ICT devices and to manage data efficiently. The open integrated control derived from this process is the software interface structure of Open API. It is an observer that serves as real-time data collection according to the communication method of ICT devices and sensors located at each end. It consists of a broker that connects and transmits to the upper integrated management server. As a result of the performance analysis through verification of two first-generation dairy smart farm model sites, the average daily milk production increased compared to the previous year (farm A 5.13%, farm B 1.33%, p<0.05). Cow days open (DO) was reduced by 17.5% on farm A and 13.3% for farm B(p<0.05). Cows require an adaptation period after the introduction of the ICT device, but if continuous effects are observed, the effect of production can be expected to increase gradually.

Development and Verification of A Module for Positioning Buried Persons in Collapsed Area (붕괴지역의 매몰자 위치측위를 위한 모듈 개발 및 검증)

  • Moon, Hyoun-Seok;Lee, Woo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.427-436
    • /
    • 2016
  • Due to disasters such as earthquakes and landslides in urban areas, persons have been buried inside collapsed buildings and structures. Rescuers have mainly utilized detection equipment by applying sound, video and electric waves, but these are expensive and due to the directional approaches onto the collapsed site, secondary collapse risk can arise. In addition, due to poor utilization of such equipment, new human detection technology with quick and high reliability has not been utilized. To address these issues, this study develops a wireless signal-based human detection module that can be loaded into an Unmanned Aerial Vehicle (UAV). The human detection module searches for the 3D location for buried persons by collecting Wi-Fi signal and barometer sensors data transmitted from the mobile phones. This module can gain diverse information from mobile phones for buried persons in real time. We present a development framework of the module that provides 3D location data with more reliable information by delivering the collected data into a local computer in the ground. This study verified the application feasibility of the developed module in a real collapsed area. Therefore, it is expected that these results can be used as a core technology for the quick detection of buried persons' location and for relieving them after disasters that induce building collapses.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

A design and implementation of Face Detection hardware (얼굴 검출을 위한 SoC 하드웨어 구현 및 검증)

  • Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.43-54
    • /
    • 2007
  • This paper presents design and verification of a face detection hardware for real time application. Face detection algorithm detects rough face position based on already acquired feature parameter data. The hardware is composed of five main modules: Integral Image Calculator, Feature Coordinate Calculator, Feature Difference Calculator, Cascade Calculator, and Window Detection. It also includes on-chip Integral Image memory and Feature Parameter memory. The face detection hardware was verified by using S3C2440A CPU of Samsung Electronics, Virtex4LX100 FPGA of Xilinx, and a CCD Camera module. Our design uses 3,251 LUTs of Xilinx FPGA and takes about 1.96${\sim}$0.13 sec for face detection depending on sliding-window step size, when synthesized for Virtex4LX100 FPGA. When synthesized on Magnachip 0.25um ASIC library, it uses about 410,000 gates (Combinational area about 345,000 gates, Noncombinational area about 65,000 gates) and takes less than 0.5 sec for face realtime detection. This size and performance shows that it is adequate to use for embedded system applications. It has been fabricated as a real chip as a part of XF1201 chip and proven to work.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

A Study on Continuous long-term Wave Observation using Remote Monitoring System (원격모니터링을 이용한 연속파랑관측에 관한 연구)

  • Shin, Bumshick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.654-659
    • /
    • 2018
  • In this study, continuous long-term observation is implemented with an ocean radar. Ocean radar conducts remote observation (combined) with ground-based radars, which enable a series of simultaneous observations of an extensive range of the coast with high frequency. An ocean radar for continuous long-term observation is operated at Samcheok on the east coast of Korea. Samcheok experienced tsunami damage in recent years and is the location of a nuclear power plant. In order to examine the reliability of the ocean radar, a pressure-type wave gauge, ultrasonic wave gauge, and ocean buoy are installed for the purpose of data comparison and verification. The ocean radar used in this study is an array-type HF-RADAR named WERA (WavE RAdar). The analysis of the data obtained from continuous long-term observations showed that the radar observations were in agreement with more than 90% of the wave data collected within a 25 km range from the center of two sites. Less than 1% of the entire observation data was unmeasured by the time series analysis. As a result of comparing the radar data with the direct observations made by the wave gauge, it was inferred that the RMS deviation is less than 20cm and the correlation coefficient was in the range of 0.84 ~ 0.87. Moreover, supported by such observations, a comprehensive monitoring system is being developed to provide the public with real-time reports on waves and currents via the internet.

An Emulation System for Efficient Verification of ASIC Design (ASIC 설계의 효과적인 검증을 위한 에뮬레이션 시스템)

  • 유광기;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.17-28
    • /
    • 1999
  • In this paper, an ASIC emulation system called ACE (ASIC Emulator) is proposed. It can produce the prototype of target ASIC in a short time and verify the function of ASIC circuit immediately The ACE is consist of emulation software in which there are EDIF reader, library translator, technology mapper, circuit partitioner and LDF generator and emulation hardware including emulation board and logic analyzer. Technology mapping is consist of three steps such as circuit partitioning and extraction of logic function, minimization of logic function and grouping of logic function. During those procedures, the number of basic logic blocks and maximum levels are minimized by making the output to be assigned in a same block sharing product-terms and input variables as much as possible. Circuit partitioner obtain chip-level netlists satisfying some constraints on routing structure of emulation board as well as the architecture of FPGA chip. A new partitioning algorithm whose objective function is the minimization of the number of interconnections among FPGA chips and among group of FPGA chips is proposed. The routing structure of emulation board take the advantage of complete graph and partial crossbar structure in order to minimize the interconnection delay between FPGA chips regardless of circuit size. logic analyzer display the waveform of probing signal on PC monitor that is designated by user. In order to evaluate the performance of the proposed emulation system, video Quad-splitter, one of the commercial ASIC, is implemented on the emulation board. Experimental results show that it is operated in the real time of 14.3MHz and functioned perfectly.

  • PDF