• Title/Summary/Keyword: real-time quantitative PCR

Search Result 743, Processing Time 0.027 seconds

Quantitative analysis of myxosporean parasites (Enteromyxum leei and Parvicapsula anisocaudata) detected from emaciated olive flounder (Paralichthys olivaceus) and rearing water (여윔증상 넙치 및 사육수 내 검출된 점액포자충(Enteromyxum leei and Parvicapsula anisocaudata)의 정량적 분석)

  • Lee, Young Juhn;Jun, Lyu Jin;Kim, Ye Ji;Han, Ji Eun;Lee, Eung Jun;Jeong, Joon Bum
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • Quantitative analysis of myxosporean parasites (Enteromyxum leei and Parvicapsula anisocaudata) were performed using real-time PCR on the internal organs (head kidney, body kidney, intestine, spleen, brain, liver, heart, muscle, blood, and eye) of emaciated Paralichthys olivaceus from farm-A. The highest DNA copy number of E. leei was shown in the intestine (1.3 × 108 copies/mg tissue) of emaciatied P. olivaceus and DNA copy number in the other internal organs (1.3 × 103~4.6 × 105 copies/mg tissue) showed lower than in intestine. From the result of real-time PCR for P. anisocaudata, it was considered mildly infected, due to the low DNA copy numbers of the head kidney (1.3 × 103 copies/mg tissue) and body kidney (9.1 × 103 copies/mg tissue). In order to investigate whether myxosporean parasites can be detected in a non-invasive way, quantitative analysis of E. leei and P. anisocaudata from rearing water of three farms were performed by real-time PCR. The DNA copy number of E. leei from rearing water of farm-A and farm-B were 8 × 104 and 5 × 105 copies/L, respectively. However, it was not detected in farm-C. For P. anisocaudata from rearing water, farm-A, farm-B and farm-C showed 0, 2.0 × 106 and 5.1 × 106 copies/L, respectively.

Application of the TaqMan® real-time PCR assay for the detection of chicken (Gallus gallus) meat in pork products (돼지고기 제품 내 닭고기 검출을 위한 TaqMan® real-time PCR의 적용)

  • Koh, Ba-Ra-Da;Kim, Ji-Yeon;Na, Ho-Myung;Park, Seong-Do;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2013
  • Many consumers are increasingly concerned about the meat they eat, and accurate labelling is important due to public health, economic and legal concerns. Meat species adulteration is a common problem in the retail markets. In this study, a TaqMan$^{(R)}$ quantitative real-time polymerase chain reaction (PCR) assay was applied for its ability to quantify chicken meat, which was not indicated on the label, in 79 commercial pork products (ham, sausages, bacon and ground meat) producted by 10 different manufacturers. The amplification efficiency was 82.05% and the square regression coefficient ($R^2$) was 0.995. PCR results showed that 38.6% of ham samples, 50.0% of sausages samples, and 50.0% of ground meat samples were contaminated with chicken residuals, while the bacon samples were not contaminated with chicken residuals. Only twelve pork products of one of the manufacturers were in accordance with indicated in their labels. The PCR assay reported in this work could be particularly useful in inspection programs to verify the food labelling of commercial processed meats and to gain consumers' trust.

Development and validation of ultra-fast quantitative real-time PCR method to differentiate between Oncorhynchus keta and Oncorhynchus mykiss

  • Min-Ji Park;Han-Cheol Lee;Ji-Young Yang;Jung-Beom Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • The ultra-fast quantitative real-time polymerase chain reaction (qPCR) assay was developed and validated to differentiate the morphologically similar ones, Oncorhynchus keta and Oncorhynchus mykiss. Species-specific primers were designed for the COI genes of mtDNA. The species-specific primers designed for O. keta and O. mykiss were selectively amplified by O. keta and O. mykiss DNA, respectively. The sensitivity of O. keta and O. mykiss primers was 1 ng/μL. Quantitative testing showed that the results met the 'Guidelines on Standard Procedures for Preparing Analysis Method such as Food' proposed by the Ministry of Food and Drug Safety. The qPCR method developed and validated in this study for identifying O. keta and O. mykiss has advantages such as speed and field applicability. Therefore, this method is expected to help control forgery and alteration of raw materials in the seafood industry.

Real-Time AT-PCR for Quantitative Detection of Bovine Parainfluenza Virus Type 3 during the Manufacture of Biologics (생물의약품 제조공정에서 Bovine Parainfluenza Virus Type 3 정량 검출을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Kim, Chan-Kyong;Kim, Tae-Eun;Kim, In-Seop
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.303-310
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parainfluenza virus type 3 (BPIV3) is one of the common bovine pathogens and has widely been known as a contaminant of biologics. In order to establish the validation system for the BPIV3 safety of biologics, a real-time RT-PCR method was developed for quantitative detection of BPIV3 contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPIV3 RNA was selected, and BPIV3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 2.8 $TCID_{50}/mL$. The real-time RT-PCR method was validated to be reproducible and very specific to BPIV3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPIV3. BPIV3 RNA could be quantified in CHO cell as well as culture supernatant. Also the real-time RT-PCR assay could detect 7.8 $TCID_{50}/mL$ of BPIV3 artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPIV3 contamination during the manufacture of biologics.

Real-Time PCR for Quantitative Detection of Bovine Herpesvirus Type 1 (Bovine Herpesvirus Type 1 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Lee, Jung-Hee;Kim, Tae-Eun;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologicals using bovine materials have the risk of viral contamination. Therefore viral validation is, essential in ensuring the safety of the products. Bovine herpesvirus type 1 (BHV-1) is the most common bovine pathogen found in bovine blood, cell, tissue, and organ. In order to establish the validation system for the BHV-1 safety of the products, a real-time PCR method was developed for quantitative detection of BHV-1 in raw materials, manufacturing processes, and final products as well as BHV-1 clearance validation. Specific primers for amplification of BHV-1 DNA was selected, and BHV-1 DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $2\;TCID_{50}/ml$. The real-time PCR method was validated to be reproducible and very specific to BHV-1. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BHV-1. BHV-1 DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $10\;TCID_{50}/ml$ of BHV-1 artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BHV-1 contamination during the manufacture of biologics.

Quantitative Real-time PCR using Lactobacilli as Livestock Probiotics (Real-time PCR을 이용한 가축생균제용 유산균 정량분석)

  • Choi, Yeon-Jae;Kim, Sun-Ho;Gu, Min-Jeong;Choe, Han-Na;Kim, Dong-Un;Cho, Sang-Bum;Kim, Su-Ki;Jeon, Che-Ok;Bae, Gui-Seok;Lee, Sang-Seok
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1896-1901
    • /
    • 2010
  • This study was conducted using quantitative real-time PCR using Lactobacilli as probiotics. Quantitative real-time PCR (RT PCR) was conducted via a method involving SYBR Green 1 and a probe. Plasmid DNA was cloned using the 16S-23S rRNA intergenic species region. Gene clones were diluted from $10^2$ to $10^{10}$. Standard curves were constructed via Ct values obtained from the results of Real-time PCR via the aforementioned SYBR Green 1 and probe method. Plasmid DNA was also cloned using the 16S-23S rRNA intergenic species region and the gene clones were diluted from $10^2$ to $10^{10}$ copy numbers via the probe method. Using RT PCR, a standard curve of plasmid DNA copy numbers was also determined. The slope value for the Y-axis intercept and $R^2$ value were measured as -3.346, 33.18, and 0.993, respectively, via the first method. For the second method, the slope value for the Y-axis intercept and $R^2$ were -3.321, 31.10 and 0.995, respectively. The PCR inhibitor could not express the detection curve at a copy number over $10^{10}$ via either method, owing to high DNA density. The DNA extract from probiotics was diluted without pre-culturing, and 16 products were amplified via both methods. The Ct value was 11.06~18.12 in the first method and 16.74~22.11 in the second method. Measured probiotics and log copy values were largely similar among the methods used. It was concluded that both methods are effective for analysis, but further research will be required to verify the optimal method.

Development of a Quantitative Real-time Nucleic Acid Sequence based Amplification (NASBA) Assay for Early Detection of Apple scar skin viroid

  • Heo, Seong;Kim, Hyun Ran;Lee, Hee Jae
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • An assay for detecting Apple scar skin viroid (ASSVd) was developed based on nucleic acid sequence based amplification (NASBA) in combination with realtime detection during the amplification process using molecular beacon. The ASSVd specific primers for amplification of the viroid RNA and molecular beacon for detecting the viroid were designed based on highly conserved regions of several ASSVd sequences including Korean isolate. The assay had a detection range of $1{\times}10^4$ to $1{\times}10^{12}$ ASSVd RNA $copies/{\mu}l$ with reproducibility and precision. Following the construction of standard curves based on time to positive (TTP) value for the serial dilutions ranging from $1{\times}10^7$ to $1{\times}10^{12}$ copies of the recombinant plasmid, a standard regression line was constructed by plotting the TTP values versus the logarithm of the starting ASSVd RNA copy number of 10-fold dilutions each. Compared to the established RT-PCR methods, our method was more sensitive for detecting ASSVd. The real-time quantitative NASBA method will be fast, sensitive, and reliable for routine diagnosis and selection of viroid-free stock materials. Furthermore, real-time quantitative NASBA may be especially useful for detecting low levels in apple trees with early viroid-infection stage and for monitoring the influence on tree growth.

Real-Time PCR for Validation of Minute Virus of Mice Safety during the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Minute Virus of Mice 안전성 검증을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Cho, Hang-Mee;Kim, Hyun-Mi;Lee, Jung-Suk;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.12-20
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to minute virus of mice(MVM), and there are several reports of MVM contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the MVM safety, a real-time PCR method was developed for quantitative detection of MVM in cell lines, raw materials, manufacturing processes, and final products as well as MVM clearance validation. Specific primers for amplification of MVM DNA was selected, and MVM DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $6{\times}10^{-2}TCID_{50}/mL$. The real-time PCR method was proven to be reproducible and very specific to MVM. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with MVM. MVM DNA could be Quantified in CHO cell as well as culture supernatant. When the real-time PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of MVM.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.795-807
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

Rapid Detection of Enterobacter sakazakii Using TaqMan Real-Time PCR Assay

  • Kang, Eun-Sil;Nam, Yong-Suk;Hong, Kwang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.516-519
    • /
    • 2007
  • Enterobacter sakazakii is an emerging food pathogen, which induces severe meningitis and sepsis in neonates and infants, with a high fatality rate. The disease is generally associated with the ingestion of contaminated infant formula. In this study, we describe the development of a real-time PCR protocol to identify E. sakazakii using a TaqMan probe, predicated on the nucleotide sequence data of the 168 rRNA gene obtained from a variety of pathogens. To detect E. sakazakii, four primer sets and one probe were designed. Five strains of E. sakazakii and 28 non-E. sakazakii bacterial strains were used in order to ensure the accuracy of detection. The PCR protocol successfully identified all of the E. sakazakii strains, whereas the 28 non-E. sakazakii strains were not detected by this method. The detection limits of this method for E. sakazakii cells and purified genomic DNA were 2.3 CFU/ assay and 100 fg/assay, respectively. These findings suggest that our newly developed TaqMan real-time PCR method should prove to be a rapid, sensitive, and quantitative method for the detection of E. sakazakii.