• Title/Summary/Keyword: real-time location

Search Result 1,386, Processing Time 0.032 seconds

A Development of Fuzzy Logic-Based Evaluation Model for Traffic Accident Risk Level (퍼지 이론을 이용한 교통사고 위험수준 평가모형)

  • 변완희;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • The evaluation of risk level or possibility of traffic accidents is a fundamental task in reducing the dangers associated with current transportation system. However, due to the lack of data and basic researches for identifying such factors, evaluations so far have been undertaken by only the experts who can use their judgements well in this regard. Here comes the motivation this thesis to evaluate such risk level more or less in an automatic manner. The purpose of this thesis is to test the fuzzy-logic theory in evaluating the risk level of traffic accidents. In modeling the process of expert's logical inference of risk level determination, only the geometric features have been considered for the simplicity of the modeling. They are the visibility of road surface, horizontal alignment, vertical grade, diverging point, and the location of pedestrain crossing. At the same time, among some inference methods, fuzzy composition inference method has been employed as a back-bone inference mechanism. In calibration, the proposed model used four sites' data. After that, using calibrated model, six sites' risk levels have been identified. The results of the six sites' outcomes were quite similar to those of real world other than some errors caused by the enforcement of the model's output. But it seems that this kind of errors can be overcome in the future if some other factors such as driver characteristics, traffic environment, and traffic control conditions have been considered. Futhermore, the application of site's specific time series data would produce better results.

  • PDF

Development of Wearable Device for Monitoring Working Environment in Pig House (양돈장 작업환경 모니터링을 위한 웨어러블 장비개발)

  • Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • Enclosed pig house are creating an environment with high concentrations of gas and dust. Poor conditions in pig farms reduce pig weight and increase disease and accidents for livestock workers. In the pig house, the high concentration of harmful gas may cause asphyxiation accidents to workers and chronic respiratory disease by long-term exposure. As pig farm workers have been aging and feminized, the damage to the health of the harsh environment is getting serious, and real-time monitoring is needed to prevent the damage. However, most of the measuring devices related to humidity, harmful gas, and fine dust except temperature sensors are exposed to high concentrations of gas and dust inside pig house and are difficult to withstand for a long time. The purpose of this study is to develop an wearable based device to monitor the hazardous environment exposed to workers working in pig farms. Based on the field monitoring and previous researches, the measurement range and basic specifications of the equipment were selected, and wearable based device was designed in terms of utilization, economic efficiency, size and communication performance. Selected H2S and NH3 sensors showed the average error of 5.3% comparing to standard gas concentrations. The measured data can be used to manage the working environment according to the worker's location and to obtain basic data for work safety warning.

Stream Data Analysis of the Weather on the Location using Principal Component Analysis (주성분 분석을 이용한 지역기반의 날씨의 스트림 데이터 분석)

  • Kim, Sang-Yeob;Kim, Kwang-Deuk;Bae, Kyoung-Ho;Ryu, Keun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.233-237
    • /
    • 2010
  • The recent advance of sensor networks and ubiquitous techniques allow collecting and analyzing of the data which overcome the limitation imposed by time and space in real-time for making decisions. Also, analysis and prediction of collected data can support useful and necessary information to users. The collected data in sensor networks environment is the stream data which has continuous, unlimited and sequential properties. Because of the continuous, unlimited and large volume properties of stream data, managing stream data is difficult. And the stream data needs dynamic processing method because of the memory constraint and access limitation. Accordingly, we analyze correlation stream data using principal component analysis. And using result of analysis, it helps users for making decisions.

An Adaptive Transversal Filter for GNSS Receiver: Implementation and Performance Evaluation

  • Lee, Geon-Woo;Choi, Jin-Kyu;Shin, Dong-Ho;Kim, Young-Il;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.353-357
    • /
    • 2006
  • One-sided and two-sided ATF for GNSS receiver are deigned, implemented and evaluated in this paper. The difference f filter characteristics such as the location of zeros and the frequency response is reviewed and examined with experiments. NLMS adaptation algorithm is adopted for updating the weighting coefficients of the 12-tap FIR filter. he performance of ATF is evaluated using real signals consisting of the signals from GPS simulator and the signal generator. The output of ATF is fed into the SDR to evaluate SNR and the position accuracy. The complexity of implementation is also compared and the effects of the time delay and the phase delay are examined. The experimental results show that one-sided and two-sided ATF give similar performance against single tone CWI.

  • PDF

The Implementation of Graph-based SLAM Using General Graph Optimization (일반 그래프 최적화를 활용한 그래프 기반 SLAM 구현)

  • Ko, Nak-Yong;Chung, Jun-Hyuk;Jeong, Da-Bin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2019
  • This paper describes an implementation of a graph-based simultaneous localization and mapping(SLAM) method called the General Graph Optimization. The General Graph Optimization formulates the SLAM problem using nodes and edges. The nodes represent the location and attitude of a robot in time sequence, and the edge between the nodes depict the constraint between the nodes. The constraints are imposed by sensor measurements. The General Graph Optimization solves the problem by optimizing the performance index determined by the constraints. The implementation is verified using the measurement data sets which are open for test of various SLAM methods.

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

Development of a Targeted Recommendation Model for Earthquake Risk Prevention in the Whole Disaster Chain

  • Su, Xiaohui;Ming, Keyu;Zhang, Xiaodong;Liu, Junming;Lei, Da
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.14-27
    • /
    • 2021
  • Strong earthquakes have caused substantial losses in recent years, and earthquake risk prevention has aroused a significant amount of attention. Earthquake risk prevention products can help improve the self and mutual-rescue abilities of people, and can create convenient conditions for earthquake relief and reconstruction work. At present, it is difficult for earthquake risk prevention information systems to meet the information requirements of multiple scenarios, as they are highly specialized. Aiming at mitigating this shortcoming, this study investigates and analyzes four user roles (government users, public users, social force users, insurance market users), and summarizes their requirements for earthquake risk prevention products in the whole disaster chain, which comprises three scenarios (pre-quake preparedness, in-quake warning, and post-quake relief). A targeted recommendation rule base is then constructed based on the case analysis method. Considering the user's location, the earthquake magnitude, and the time that has passed since the earthquake occurred, a targeted recommendation model is built. Finally, an Android APP is implemented to realize the developed model. The APP can recommend multi-form earthquake risk prevention products to users according to their requirements under the three scenarios. Taking the 2019 Lushan earthquake as an example, the APP exhibits that the model can transfer real-time information to everyone to reduce the damage caused by an earthquake.

High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance (동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획)

  • Jung, Euigon;Song, Wonho;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Optimization sensor placement of marine platforms using modified ECOMAC approach

  • Vosoughifar, Hamidreza;Yaghoubi, Ali;Khorani, Milad;Biranvand, Pooya;Hosseininejad, Seyedehzeinab
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.587-599
    • /
    • 2021
  • The modified-ECOMAC approach to monitor and investigate health of structure in marine platforms was evaluated in this research. The material properties of structure were defined based on the real platform located in Persian Gulf. The nonlinear time-history analyses were undertaken using the marine natural waves. The modified-ECOMAC approach was designed to act as the solution of the best sensor placement according to structural dynamic behavior of structure. This novel method uses nonlinear time-history analysis results as an exact seismic response despite the common COMAC algorithms utilize the eigenvalue responses. The processes of modified-ECOMAC criteria were designed and developed by author of this paper as a toolbox of Matlab. The Results show that utilizing an efficient ECOMAC method in SHM process leads to detecting the critical weak points of sensitive marine platforms to make better decision about them. The statistical results indicate that considering modified ECOMAC based on seismic waves analysis has an acceptable accuracy on identify the sensor location. The average of statistical comparison of COMAC and ECOMAC via modal and integrated analysis, had a high MAE of 0.052 and RSME of 0.057 and small R2 of 0.504, so there is significant difference between them.

Design of Building Dataset and Traffic Light Recognition Module for Domestic Urban Autonomous Driving (국내 도심에서 자율주행을 위한 신호등 인식 모듈 및 데이터 셋 구축 프로세스 설계)

  • Jaehyeong Park;Jin-Hee Lee;Je-Seok Kim;Soon Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.235-242
    • /
    • 2024
  • In the context of urban autonomous driving, where various types of traffic lights are encountered, traffic light recognition technology is of paramount importance. We have designed a high-performance traffic light recognition module tailored to scenarios encountered in domestic urban driving and devised a dataset construction process. In this paper, we focus on minimizing the camera's dependency to enhance traffic light recognition performance. The camera is used solely to distinguish the color information of traffic lights, while accurate location information of the traffic lights is obtained through localization and a map. Based on the information from these components, camera RoIs (Region of Interest) are extracted and transmitted to the embedded board. The transmitted images are then sent back to the main system for autonomous driving control. The processing time for one traffic light RoI averages 43.2 ms. We achieve processing times of average 93.4 ms through batch inference to meet real-time requirements. Additionally, we design a data construction process for collecting, refining, and storing traffic light datasets, including semi-annotation-based corrections.