• Title/Summary/Keyword: real-time kinematic

Search Result 224, Processing Time 0.027 seconds

Accuracy Evaluation of Boundary corner point using VRS GPS (VRS GPS을 이용한 필계점의 정확도 평가)

  • Jang, Sang-Kyu;Kim, Jin-Soo;Jeong, Gong-Uhn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The accuracy of RTK GPS is limited by the distance dependent errors from orbit, ionosphere and troposphere, as the distance between the rover and the base station increases in the Real Time Kinematic surveying. To solve this problem, VRS system has installed. This study would estimated the accuracy of cadastral detail surveying, which is used on the VRS RTK instead of Total Station and RTK GPS demand for various equipments and time. As a result of study, the positioning accuracy of the VRS RTK and RTK GPS surveying make no greate difference, as RMSE of VRS RTK surveying is 0.144m and that of RTK GPS surveying is 0.146m and the new method would be more efficient.

  • PDF

Braking Distance Estimation using Frictional Energy Rate (마찰에너지율을 이용한 타이어 제동거리 예측)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Gi-Jeon;Woo, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

Analyzing Position-Domain Hatch Filter for Real-Time Kinematic Differential GNSS (실시간 동적 차분 위성항법을 위한 위치영역 Hatch 필터의 성능 해석)

  • Lee, Hyeong-Geun;Ji, Gyu-In;Rizos, C.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2006
  • Performance characteristics of the position-domain Hatch filter is analyzed for differential global navigation satellite systems. It is shown that the position-domain Hatch filter generates white measurement residual sequences, which is beneficial property for fault detection. It is also shown that the position-domain Hatch filter yields more accurate a priori state estimate than the position-domain Kalman-type filter. Thus, it can be concluded that the position-domain Hatch filter is beneficial in wide application areas where fault-tolerance and accuracy are required at the same time.

Biomechanical Analysis on Dynamic Back Loading Related with Low Back Disorders with Toggle Tasks in Leather Industry Low back (피혁제조 공정 중 토글 작업에서 요통과 관련된 요추 부하의 생체역학적 분석과 개선 방안)

  • Kim, Kyoo Sang;Hong, Chang-Woo;Lee, Dong Kyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Low back disorders (LBDs) have been the most common musculoskeletal problem in Korean workplaces. It affects many workers, and is associated with high costs to many companies as well as the individual, which can negatively influence even the quality of life of workers. The _evaluation of low back disorder risk associated with manual materials handling tasks can be performed using variety of ergonomic assessment tools such as National Institute for Occupational Safety and Health (NIOSH) Revised Lifting Equation (NLE), the Washington Administrative Code 296-62-0517 (WAC), the Snook Tables etc. But most of these tools provide limited information for choosing the most appropriate assessment method for a particular job and in finding out advantage and disadvantage of the methods, and few have been assessed for their predictive ability. The focus of this study was to _evaluate spinal loads in real time with lifting and pulling heavy cow leathers in variety of postures. Data for estimating mean trunk motions were collected as employees did their work at the job site, using the Lumbar Motion Monitor. Eight employees (2 males, 6 females) were selected in this study, in which the load weight and the vertical start and destination heights of the activity remained constant throughout the task. Variance components (three dimensional spaces) of mean trunk kinematic measures were estimated in a hierarchical design. They were used to compute velocity and acceleration of multiple employees performing the same task and to repetitive movements within a task. Therefore, a results of this study could be used as a quantitative, objective measure to design the workplace so that the risk of occupationally related low back disorder should be minimized.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model (타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.255-262
    • /
    • 2012
  • Human motion tracking algorithm is receiving attention from many research areas, such as human computer interaction, video conference, surveillance analysis, and game or entertainment applications. Over the last decade, various tracking technologies for each application have been demonstrated and refined among them such of real time computer vision and image processing, advanced man-machine interface, and so on. In this paper, we introduce cost-effective and real-time human motion tracking algorithms based on depth image 3D point matching with a given superellipsoid body representation. The body representative model is made by using parametric volume modeling method based on superellipsoid and consists of 18 articulated joints. For more accurate estimation, we exploit initial inverse kinematic solution with classified body parts' information, and then, the initial pose is modified to more accurate pose by using 3D point matching algorithm.

A Study on Marine Pile Construction Management by Real-Time Kinematic GPS Positioning (RTK-GPS 측량에 의한 해상파일 시공관리에 관한 연구)

  • 강길선
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2003
  • Automatic control technologies for the marine pile driving provides accurate and rapid intruding into the planned positions of the pile with planned slope and direction, so that the construction maintenance and management are more efficient and the quality of the construction is more promising. Therefore, in this study, the application scheme of RTK GPS to the automatic control of the pile driving presented. It is expected that the presented scheme using the precise RTK GPS technique assures the efficient and economic 3D positioning accuracy for the precise marine construction management like the precise foundation of marine structures made of piles and the dredging work. It is found that the suggested scheme decrease 60% of the construction error compared with specifications reference because marine position accuracy is measured within 4cm in real time. In addition, the automatic position control system using GPS reduced the construction period and cost compared with existing methods about 30% and 35%, respectively.

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.