• Title/Summary/Keyword: real-time image processing

Search Result 1,352, Processing Time 0.029 seconds

Raining Image Enhancement and Its Processing Acceleration for Better Human Detection (사람 인식을 위한 비 이미지 개선 및 고속화)

  • Park, Min-Woong;Jeong, Geun-Yong;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.345-351
    • /
    • 2014
  • This paper presents pedestrian recognition to improve performance for vehicle safety system or surveillance system. Pedestrian detection method using HOG (Histograms of Oriented Gradients) has showed 90% recognition rate. But if someone takes a picture in the rain, the image may be distorted by rain streaks and recognition rate goes down by 62%. To solve this problem, we applied image decomposition method using MCA (Morphological Component Analysis). In this case, rain removal method improves recognition rate from 62% to 70%. However, it is difficult to apply conventional image decomposition method using MCA on vehicle safety system or surveillance system as conventional method is too slow for real-time system. To alleviate this issue, we propose a rain removal method by using low-pass filter and DCT (Discrete Cosine Transform). The DCT helps separate the image into rain components. The image is removed rain components by Butterworth filtering. Experimental results show that our method achieved 90% of recognition rate. In addition, the proposed method had accelerated processing time to 17.8ms which is acceptable for real-time system.

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

A Real Time Processing Technique for Content-Based Image Retargeting (컨텐츠 기반 영상 리타겟팅을 위한 실시간 처리 기법)

  • Lee, Kang-Hee;Yoo, Jae-Wook;Park, Dae-Hyun;Kim, Yoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • In this paper, we propose a new real time image retargeting method which preserves the contents of an image. Since the conventional seam carving which is the well-known content-based image retargeting technology uses the dynamic programming method, the repetitive update procedure of the accumulation minimum energy map is absolutely needed. The energy map update procedure cannot avoid the processing time delay because of many operations by the image full-searching. The proposed method calculates the diffusion region of each seam candidates in the accumulation minimum energy map in order to reduce the update processing time. By using the diffusion region, several seams are extracted at the same time and the update number of accumulation energy map is reduced. Therefore, although the fast processing is possible, the quality of an image can be analogously maintained with an existing method. The experimental results show that the proposed method can preserve the contents of an image and adjust the image size on a real-time.

Real-time Haze Removal Method using Brightness Transformation based on Atmospheric Scatter Coefficient Rate and Local Histogram Equalization (대기 산란 계수 비율 기반의 밝기변환과 지역적 히스토그램 평활화를 이용한 실시간 안개 제거 방법)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.10-21
    • /
    • 2016
  • Images taken from outdoor are degraded quality by fog or haze, etc. In this paper, we propose a method that provides the visibility improved images through fog or haze removal. We proposed haze removal method that uses brightness transform based on atmospheric scatter coefficient rate with local histogram equalization. To calculate the transmission rate that indicate fog rate in original image, we use atmospheric scatter coefficient rate based on quadratic equations about haze model. And primary brightness transformed image can be obtained by using the obtained transmission rate. Also we use local histogram equalization with proposed brightness transform for effectively image visibility enhancement. Unlike existing methods, our method can process real-time with stable and effect image visibility enhancement. Proposed method use only the luminance images processed by good performance surveillance systems because it represents the real-time processing is required, black-box, digital camera and multimedia equipment is applicable. Also because it shows good performance only with the luminance images processed, Surveillance systems, black boxes, digital cameras, and multimedia devices etc, that require real-time processing can be applied.

FPGA implementation using a CLAHE contrast enhancement technique in the termal equipment for real time processing

  • Jung, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose an approach for real time computation of rayleigh CLAHE using a FPGA. The contrast enhancement technique should be applied in thermal equipment having a low contrast image. And thermal equipment must be processed in real time. The CLAHE is an improved algorithm based Histogram Equalization, but the HW design is complex. A value greater than a given threshold in CLAHE should be equally distributed on the other histogram bin, this process requires iterations for the distribution. But implementation of this processing in the FPGA is constrained, so this section was implemented on the assumption of the histogram distribution or modified the operation process or implemented separately in the CPU. In this paper, we designed a distinct redistribution operation in two stages. So FPGA was designed for easy, this was designed to be distributed evenly without the assumptions and constraints. In addition, we have designed a CLAHE with the rayleigh distribution to the FPGA. The simulation shows that the proposed method provides a better image quality in the thermal image.

(Real Time Classification System for Lead Pin Images) (실시간 Lead Pin 영상 분류 시스템)

  • 장용훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1177-1188
    • /
    • 2002
  • To classify real time Lead pin images in this paper, The image acquisition system was composed to C.C.D, image frame grabber(DT3153), P.C(PentiumIII). I proposed image processing algorithms. This algorithms were composed to real time monitoring, Lead Pin image acquisition, image noise deletion, object area detection, point detection and pattern classification algorithm. The raw images were acquired from Lead pin images using the system. The result images were obtained from raw images by image processing algorithms. In implemental result, The right recognition was 97 of 100 acceptable products, 95 of 100 defective products. The recognition rate was 96% for total 200 Lead Pins.

  • PDF

A study on game physics engine focused on real time physics (물리 엔진에 관한 고찰 : 실시간 물리 기술을 중심으로)

  • Ha, You-Jong;Park, Kyoung-Ju
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.43-52
    • /
    • 2009
  • This paper analyzes the four game physics engines in terms of real time techniques. Real time physics is the technology that simplifies the physics-based simulation to apply for the real time applications such as game. Our study includes two commercial physics engines, Havok's Physics SDK and NVIDIA's PhysX SDK, and two open source projects, Open Dynamics Engine and Bullet physics engine. As a result, most of them covers rigid body dynamics and some include either deformable body simulation or fluids simulation, or both. For real time simulation, they adopt the simplified numerical methods, the effective in collision detection/response, and also use the parallel processing hardwares, i.e., multi core CPU, Physics processing unit(PPU), or graphics processing unit(GPU).

  • PDF

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

Development of Real-Time Displacement Measurement System for Multiple Moving Objects of construction structures using Image Processing Techniques (영상처리기술을 이용한 건축 구조물의 실시간 변위측정 시스템의 개발)

  • Kim, Sung-Wook;Seo, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.764-769
    • /
    • 2003
  • The paper introduces a development result for displacement measurement system of multiple moving objects based on image processing technique. The image processing method adopts inertia moment theory for obtaining the centroid of the targets and basic processing algorithms of gray, binary, closing, labeling and etc. To get precise displacement measurement in spite of multiple moving targets, a CCD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in directions of X -Y coordinates. The precise alignment device is pan /tilt of X - Y type and the pan/tilt is controlled by DC servomotors which are driven by 80c196kc microprocessor based controller. The centers of the fiducial marks are obtained by a inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are stored in the database system in a real time. By using database system and internet, displacement data can be confirmed at a great distance and analyzed. The developed system shows the effectiveness such that it realizes the precision about 0.12mm in the position control of X -Y coordinates.

  • PDF

An FPGA-based Parallel Hardware Architecture for Real-time Eye Detection

  • Kim, Dong-Kyun;Jung, Jun-Hee;Nguyen, Thuy Tuong;Kim, Dai-Jin;Kim, Mun-Sang;Kwon, Key-Ho;Jeon, Jae-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.150-161
    • /
    • 2012
  • Eye detection is widely used in applications, such as face recognition, driver behavior analysis, and human-computer interaction. However, it is difficult to achieve real-time performance with software-based eye detection in an embedded environment. In this paper, we propose a parallel hardware architecture for real-time eye detection. We use the AdaBoost algorithm with modified census transform(MCT) to detect eyes on a face image. We parallelize part of the algorithm to speed up processing. Several downscaled pyramid images of the eye candidate region are generated in parallel using the input face image. We can detect the left and the right eye simultaneously using these downscaled images. The sequential data processing bottleneck caused by repetitive operation is removed by employing a pipelined parallel architecture. The proposed architecture is designed using Verilog HDL and implemented on a Virtex-5 FPGA for prototyping and evaluation. The proposed system can detect eyes within 0.15 ms in a VGA image.