• 제목/요약/키워드: real-time health monitoring system

검색결과 263건 처리시간 0.025초

실시간 혈압 모니터링 u-헬스케어 시스템의 설계 (Design of U-healthcare System for Real-time Blood Pressure Monitoring)

  • 조병호
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.161-168
    • /
    • 2018
  • 고혈압은 현대 주요 성인병이며 기존의 혈압계로는 실시간 혈압 측정 및 원격 모니터링이 어렵다. 그러나 실시간 혈압 모니터링 u-헬스케어 시스템은 효과적인 건강관리가 가능하도록 해준다. 실시간 혈압 모니터링을 위해 본 논문에서는 손목형 혈압계, 스마트폰 및 u-헬스케어 서버로 구성된 실시간 혈압 모니터링 u-헬스케어 시스템의 구조를 제시한다. 그리고 손목형 혈압계의 하드웨어 설계를 위한 주요 핵심 기능인 맥파검출 아날로그 회로 구성과 손목형 혈압계를 구성하는 디지털 하드웨어 구성을 제시한다. 또한 이들 하드웨어 시스템을 동작시키는 소프트웨어 개발을 위한 UML 분석방법과 소프트웨어 설계를 위한 플로우차트와 화면 설계를 보여준다. 따라서 본 논문에서 제시한 설계방법은 실시간 모니터링 u-헬스케어 시스템 구현에 매유 유용하게 활용될 수 있을 것으로 기대된다.

Real-time estimation of responses and loads of real-scale pipes subjected to earthquakes and external loads using digital twin technology

  • Dongchang Kim;Shinyoung Kwag;Sung-Jin Chang;Seunghyun Eem
    • Smart Structures and Systems
    • /
    • 제33권5호
    • /
    • pp.375-383
    • /
    • 2024
  • Infrastructure facilities contain various pipe systems, which can be considerably damaged by external loads such as earthquakes. Therefore, structural health monitoring (SHM) and safety assessment of pipes are crucial. Digital twin technology for SHM of pipes is important in the industry. This study proposes a digital twin system that estimates the behavior, stress, and external load of real-scale pipes in real time under simultaneous seismic and external loads using a minimum number of sensors. Vibration tests were performed to construct the digital twin system, and a numerical model was developed that considered the dynamic characteristics of a target pipe. Moreover, a reduced-order modeling technique of a numerical model was applied to enhance its real-time performance. The digital twin system successfully estimated the response of the pipe at all points. Verification of the digital twin system was performed by comparing it with the experimental parameters of a real-scale pipe. The proposed digital twin system can help enhance SHM and system's maintenance.

구조안전성 평가를 위한 무선 진동 모니터링 시스템 개발 (Development of a Wireless Vibration Monitoring System for Structural Health Evaluation)

  • 심보군;이시복;채민성
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.166-171
    • /
    • 2010
  • Wired monitoring systems have been used for damage detection and dynamic analysis of large structures(bridges, dams, plants, etc.). However, the real-world applications still remain limited, mainly due to time and cost issues inherent to wired systems. In recent years, an increasing number of researchers have adopted WSN(wireless sensor network) technologies to the field of SHM(structural health monitoring). Accurate time synchronization is most critical for the wireless approach to be feasible for SHM purpose, along with sufficient wireless bandwidth and highly precise measuring resolution. To satisfy technical criteria stated above, a wireless vibration monitoring system that uses high-precision MEMS(micro-electro-mechanical system) sensors and A/D convertor is discussed in detail. It was found experimentally that the level of time synchronization fell within $200\;{\mu}sec$.

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

유해물질 이송관로 파손누출 실시간 예방 및 감시 기술개발 (The Development of Real-Time Leak Monitoring System for Management of Hazardous Material Pipeline)

  • Chae, Sookwon;Seo, Jaesoon;Kim, Joonseok
    • 한국재난정보학회 논문집
    • /
    • 제12권2호
    • /
    • pp.122-129
    • /
    • 2016
  • 본 연구에서는 돌발적 충격에 의한 파손사전 예방감시를 위한 이중구조 파이프, 측량 및 시공 속성정보 수집을 위한 스마트 폰 앱 프로그램 개발, 실시간 감시를 위한 서버프로그램 등을 개발하였다. 본 연구에서 개발한 시스템의 효과를 분석하기 위하여 파일럿규모의 시험을 야외시험장에 구축하였다. 파손 예방을 위한 데이터는 파이프에 부착된 센서를 통하여 감지된다. 누출은 압력센서를 일정한 간격으로 설치하여 시험하였다. VRS 측량장비와 스마트폰을 연계한 앱 프로그램과 서버프로그램을 통하여 실시간 자료 수집과 감시가 가능하도록 하였다.

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.

시계열 DB를 이용한 생체신호 데이터 수집 및 모니터링 시스템 (Bio-Signal Data Collection and Monitoring System Using Time Series DB.)

  • 강동윤;주문일;;김희철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.211-212
    • /
    • 2021
  • 최근 건강에 대한 관심이 증가하며 다양한 생체정보를 수집할 수 있는 웨어러블 시장이 확대되고 있다. 또한 이러한 생체신호를 통한 원격의료와 헬스케어 서비스가 보편화될 것으로 예상된다. 본 논문에서는 IoT 장비를 통해 수집한 생체신호를 데이터베이스에 저장 및 웹을 통해 실시간 모니터링이 가능한 서비스를 소개한다. 생체 데이터의 수집 및 저장과 실시간 모니터링을 시스템을 구현함으로 다양한 건강관리 진단에 활용될 수 있다.

  • PDF

A REAL-TIME REMOTE SENSING AND DATA ACQUISITION SYSTEM FOR A NUCLEAR POWER PLANT

  • Kim, Ki-Ho;Hieu, Bui Van;Beak, Seung-Hyun;Choi, Seung-Hwan;Son, Tae-Ha;Kim, Jung-Kuk;Han, Seung-Chul;Jeong, Tai-Kyeong
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.99-104
    • /
    • 2011
  • A Structure Health Monitoring (SHM) system needs a real-time remote data acquisition system to monitor the status of a structure from anywhere via Internet access. In this paper, we present a data acquisition system that monitors up to 40 Fiber Bragg Grating Sensors remotely in real-time. Using a TCP/IP protocol, users can access information gathered by the sensors from anywhere. An experiment in laboratory conditions has been done to prove the feasibility of our proposed system, which is built in special-purpose monitoring system.

광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템 (An Experimental Study on Density Tool Calibration)

  • 장기태;정경선;김성환
    • 지구물리
    • /
    • 제8권1호
    • /
    • pp.7-14
    • /
    • 2005
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster. Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG) sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.