• 제목/요약/키워드: real-time control system

Search Result 4,292, Processing Time 0.044 seconds

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

Implementation and Performance Evaluation of RTOS-Based Dynamic Controller for Robot Manipulator (Real-Time OS 기반의 로봇 매니퓰레이터 동력학 제어기의 구현 및 성능평가)

  • Kho, Jaw-Won;Lim, Dong-Cheal
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.109-114
    • /
    • 2008
  • In this paper, a dynamic learning controller for robot manipulator is implemented using real-time operating system with capabilities of multitasking, intertask communication and synchronization, event-driven, priority-driven scheduling, real-time clock control, etc. The controller hardware system with VME bus and related devices is developed and applied to implement a dynamic learning control scheme for robot manipulator. Real-time performance of the proposed dynamic learning controller is tested and evaluated for tracking of the desired trajectory and compared with the conventional servo controller.

Model Based Design and Validation of Control Systems using Real-time Operating System (실시간 운영체제를 적용한 제어시스템의 모델기반 설계 및 검증)

  • Youn, Jea-Myoung;Ma, Joo-Young;SunWoo, Myoung-Ho;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents the Matlab/Simulink-based software-in-the-loop simulation(SILS) environment which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is strongly dependent on the implemented software and hardware such as the real-time operating system, the target CPU, and the communication protocol. The proposed SILS abstracts the system with tasks, task executions, real-time schedulers, and real-time networks close to the implementation. Methods to realize these components in graphical block representations are investigated with Matlab/Simulink, which is most commonly used tool for designing and simulating control algorithms in control engineering. In order to achieve a seamless development from SILS to rapid control prototyping (RCP), the SILS block-set is designed to support automatic code generation without tool changes and block modifications.

A Study on Probabilistic Response-time Analysis for Real-time Control Systems (실시간 제어시스템의 확률적 응답시간 해석에 관한 연구)

  • Han, Jae-Hyun;Shin, Min-Suk;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2006
  • In real-time control systems, the traditional timing analysis based on worst-case response-time(WCRT) is too conservative for the firm and soft real-time control systems, which permit the maximum utilization factor greater than one. We suggested a probabilistic analysis method possible to apply the firm and soft real-time control systems under considering dependency relationship between tasks. The proposed technique determines the deadline miss probability(DMP) of each task from computing the average response-time distribution under a fixed-priority scheduling policy. The method improves the predictable ability forthe average performance and the temporal behavior of real-time control systems.

Real-Time Volt/VAr Control Based on the Difference between the Measured and Forecasted Loads in Distribution Systems

  • Park, Jong-Young;Nam, Soon-Ryul;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.152-156
    • /
    • 2007
  • This paper proposes a method for real-time control of both capacitors and ULTC in a distribution system to reduce the total power loss and to improve the voltage profile over the course of a day. The multi-stage consists of the off-line stage to determine dispatch schedule based on a load forecast and the on-line stage generates the time and control sequences at each sampling time. It is then determined whether one of the control actions in the control sequence is performed at the present sampling time. The proposed method is presented for a typical radial distribution system with a single ULTC and capacitors.

Feedback Load Control Mechanism for Real-Time Web Services (실시간 웹 서비스를 위한 피드백 부하 제어 기법)

  • Jung, Suk-Yong
    • Journal of the Korea Convergence Society
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • This paper proposes a mechanism for managing overload in real-time web service system. The many previous mechanisms manage overload with controlling web request. These mechanisms can control only new web request. They don't have any control existing tasks, especially periodic tasks. We design a controller that able to meet real-time performance with controlling even periodic tasks. A feedback control system is implemented applying the proposed mechanism. And we verified the stable operation of system.

Development of an Induction Motor Vector Control System Using Simulink/RTW (Simulink/RTW를 이용한 유도전동기 벡터제어시스템 개발)

  • 강문호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.119-119
    • /
    • 2000
  • In this research an induction motor vector control system was developed using Simulink and RTW(Real Time Workshop). On the Simulink window, control system is designed in the form of block diagrams, program codes are produced automatically with the RTW, then c compiler compiles the program codes. With this automatic real time program producing mechanism rapid prototyping is realized without the time-consuming manual program coding procedures. To show effectiveness of the proposed designing scheme a DSP-based induction motor vector control system was constructed and implemented

  • PDF

Implementation of Networked Control System using a Profibus-DP Network

  • Lee, Kyung-Chang;Lee, Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 2002
  • As numerous sensors and actuators are used in many automated systems, various industrial networks are adopted for real-time distributed control. In order to take advantages of the networking, however, the network implementation should be carefully designed to satisfy real-time requirements considering network induced delays. This paper presents an implementation scheme of a networked control system via Profibus-DP network fur real-time distributed control. More specifically, the effect of the network induced delay on the control performance is evaluated on a Profibus-DP testbed. Also, two conventional PID gain tuning methods are slightly modified fur fouling controllers fur the networked control system. With appropriate choices for gains, it is shown that the networked control system can perform almost as well as the traditional control system.

Optimal Load Control Method for Solar-Powered House with Energy Storage System (전력저장장치를 이용한 태양광주택의 최적부하제어기법)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.644-651
    • /
    • 2014
  • The renewable energy system and the real-time pricing can provide the significant economic advantage for end-user of residential house. However, according to recent studies, high initial cost of renewable energy system such as photovoltaic (PV) system and lack of suitable load control methods adjusting electric power consumption in response to time-varying price are regarded as the major obstruction for introduction of renewable energy system and real-time pricing in residental household. In this paper, we propose automated optimal load control strategy which aim to achieve not only minimizing the electricity cost but also the increase in the utilization rates of PV generation power of residential PV house in real-time pricing environment. Simulation results show that our proposed optimal load control strategy leads to significant reduction in the electricity costs and increase in the utilization rates of power generated by PV system in comparison with the conventional PV house. Therefore, the proposed optimal load control strategy can provide more economic benefit to end-user.