• Title/Summary/Keyword: real-time communication

Search Result 4,195, Processing Time 0.035 seconds

A study on Design and Implementation of a Web-based real-time video communication system (웹 기반 실시간 화상 시스템 설계 및 구현에 관한 연구)

  • Ban, Tae-hak;Jeoung, Kyoung-Mo;Pyoun, Do-Kil;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.712-714
    • /
    • 2012
  • Using a web browser, real-time video communication technologies are emerging today. In this paper, we studied the web browser and take advantage of real-time video communication technology for Based on this, we have designed and implemented a Web-based real-time video communication systems. In this system, having different web browsers and web servers through a web browser using the RTC API and HTTP / WebSockets in a real-time video communication is possible. It is available at all terminals, all connected by a network environment from the use of the web browser, will be utilized in the field of visual communications in a limited environment.

  • PDF

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

Fault detection using heartbeat signal in the real-time distributed systems (실시간 분산 시스템에서 heartbeat 시그널을 이용한 장애 검출)

  • Moon, Wonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2018
  • Communication in real-time distributed system should have high reliability. To develop group communication Protocol with high reliability, potential fault should be known and when fault occurs, it should be detected and a necessary action should be taken. Existing detection method by Ack and Time-out is not proper for real time system due to load to Ack which is not received. Therefore, group communication messages from real-time distributed processing systems should be communicated to all receiving processors or ignored by the message itself. This paper can make be sure of transmission of reliable message and deadline by suggesting and experimenting fault detection technique applicable in the real time distributed system based on ring, and analyzing its results. The experiment showed that the shorter the cycle of the heartbeat signal, the shorter the time to propagate the fault detection, which is the time for other nodes to detect the failure of the node.

Real-time communication in an off-line programming (오프라인 프로그래밍에서의 실시간 통신)

  • Song, Jong-Tak;Son, Kwon;Lee, Min-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.40-43
    • /
    • 1996
  • An off-line programming, OLP, system is widely used in automation fines. To help an on-line robot system to carry out desirable tasks planned by the off-line simulation, an approach to the real-time communication is presented. The OLP system developed consists of a software, a host computer(PC), a SCARA robot body, four servo drivers, and four independent joint controllers. This study focuses on the software where real-time communication is included. The software, can be used in teaching, trajectory planning, real-time running, and performance evaluation. The evaluation of different control algorithms is one of the merits of the software. The software can give servo commands for task running. A comparison of generated and corresponding actual trajectories provides the evaluation of task performance. The safety, of the OLP system is ensured by alarming malfuntions of the system. The OLP system developed can reduce the teaching time and increase the user's convenience.

  • PDF

ASIC for Ethernet based real_time communication in DCS

  • Nakajima, Takeshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1836-1839
    • /
    • 2005
  • We have developed Ethernet based real-time communication systems called "Vnet/IP" for DCS which is the control system for process automation. This paper describes the features and the technologies of the ASIC which is utilized in the communication interface hardware for Vnet/IP. Vnet/IP has been developed for mission-critical communications. Hence it has real-time feature, high reliability and precise time synchronization capability. At the same time, it is able to deal with standard protocols without influence on mission-critical communications. The communication interface hardware has a host interface and dual redundant network interfaces. The host interface can be chosen PCI-bus or R-bus which is the proprietary internal bus developed for the high reliable redundant controller. Each network interface is a RJ45 connection with 1Gbps maximum in compliance with IEEE802.3.

  • PDF

Design Factors of Communication Channel for Real Time Service (실시간 서비스를 위한 채널의 설계 요소)

  • Choe, Young-Han;Kim, Jang-Kyung;Jang, Woong;Chin, Byong-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.401-408
    • /
    • 1998
  • Recently there comes out various applications on real time control, audio/video conference, medical image and so on. These applications request certain Quality of Service(QoS) to their underlying communication subsystem. In these cases those communication subsystems should provide real time communication service on their QoS request as well as good performance to maintain best effort traffic. In this paper firstly we briefly look over bandwidth, traffic parameters on point to point network secondly we analyze on real time channel and propose design factors in real time channel protocol for multimedia applications.

  • PDF

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.

Real-Time Characteristic Analysis of a DCS Communication Network for Nuclear Power Plants (원자력 발전소 분산 제어 시스템을 위한 네트워크의 실시간 특성 해석)

  • Lee, Sung-Woo;Yim, Han-Suck
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.650-657
    • /
    • 1999
  • In this paper, a real-time communication method using a PICNET-NP(Plant Instrumentation and Control Network for Nuclear Power plant) is proposed with an analysis of the control network requirements of DCS(Distributed Control System) in unclear power plants. The method satisfies deadline in case of worst data traffics by considering aperiodic and periodic real-time data and others.

  • PDF

A Real Time, Internet Accessed, Monitoring System of the Ocean and Harbor Environment (인터넷을 이용한 실시간 해양항만 환경모니터링 시스템의 설계)

  • 서규우;김가야
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • For effective conservation of the oceans and harbors, long-term and systematic development of the ocean and harbor monitoring system is essential. A monitoring system capable of real-time and accurate data acquisition is necessary for dealing with the level of contamination by situations, such as red tide and foods. This paper introduces an effective and economical real-time harbor environmental monitoring system that utilizes PCS wireless data communication technology. The monitoring system has various functions, such as multiple communication, TCP/IP protocol for wireless internet access, system time synchronization, and bi-directional communication between the measuring device and the server. The system has been implemented at Shinseondae harbor pier in Busan to validate the system's stability and effectiveness in data acquisition. The acquired real-time ocean and harbor environmental data is expected to have a large effect, when shared with the public through the Internet.

Design of Real Time Monitoring System of Ocean & Harbor Environment Using by Internet (인터넷을 이용한 실시간 해양항만 환경모니터링 시스템의 설계)

  • Seo, Kyu-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.63-68
    • /
    • 2003
  • For effective conservation of ocean and harbor, long-term and systematic development of the ocean and harbor monitoring system is essential. The monitoring system capable of real-time and accurate data acquisition is necessary for dealing with contamination such as red tide and the flood. This paper introduces the effective and economical real-time harbor environmental monitoring system that utilizes PCS wireless data communication technology. The monitoring system has various functions such as multiple communication, TCP/IP protocol for wireless internet access, system time synchronization, bi-directional communication between the measuring device and the server. The system has been implemented at Shinseondae harbor pier in Busan to validate the systems stability and effectiveness in data acquisition. The acquired real-time ocean and harbor environmental data is expected to have a large effect, when shared by public through internet.

  • PDF