• Title/Summary/Keyword: real-scale testing

Search Result 124, Processing Time 0.033 seconds

A Study on Operating Software Development and Calibration of Multi-Axis Simulation (다축 시뮬레이터의 구동 소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;류신호;신형성;김상석;김종태;박용래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.141-141
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in th ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axis durability testing simulator is used to car교 out the fatigue test. In this paper, the operation software for simultaneously driving 3-axis simulator is developed and the real-time signals of input-output data are displayed in window of PC. Moreover, the displacements and the loads of 3-axis actuators are calibrated separately and the operating characteristics of the actuators are evaluated.

  • PDF

Development of 3-axial Realization Algorithm of Road Profile for Multi-axial Road Simulator (다축 로드 시뮬레이터의 3축 재현 알고리즘 개발)

  • 류신호;정상화;김종태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.962-965
    • /
    • 2002
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, Hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The operation software for simultaneously controlled multi-axial simulator is developed and the input and output data are displayed window based PC controller in real time. The software to generate the real road profile are developed. This paper developed a road profile reappearance software and simultaneously apply 3-axial actuator to white noise, so we verified the propriety of reappearance software through accomplishes an real test.

  • PDF

Performance Evaluation of Paving Blocks Based Ambient Temperature Reduction Using a Climatic Environment Chamber (기후환경챔버를 활용한 블록의 공기온도 저감 성능평가)

  • Ko, Jong Hwan;Park, Dae Geun;Kim, Yong Gil;Kim, Sang Rae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • This study evaluated the reduction performance of ambient temperature and the amount of evaporation that takes place depends on the temperature difference of paving blocks which are used in the sidewalk, roadway, parking lot, park, plaza, and etc. The water-retentive block of the LID (Low Impact Development) practice was compared with the conventional concrete block. For the quantitative performance evaluation, experiments were performed in a climatic environment chamber capable of controlling the climatic environment (solar radiation, temperature, humidity, rainfall, and snowfall). The method for performance evaluation was proposed using temperature, humidity, and ambient air of paving blocks which changes according to the solar radiation and the wind speed after the rainfall. As a result, the evaporation amount of the water-retentive block was 2.6 times higher than that of the concrete block, the surface temperature of water-retentive block was $10^{\circ}C$ lower than the concrete block, and the air temperature of water-retentive block was $4.6^{\circ}C$ lower than the concrete block. Therefore, it is analyzed that the water-retentive block with a large amount of evaporation is more effective in reducing the urban heat island phenomenon as compared with the concrete block.

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Goodness-of-fit tests based on generalized Lorenz curve for progressively Type II censored data from a location-scale distributions

  • Lee, Wonhee;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.191-203
    • /
    • 2019
  • The problem of examining how well an assumed distribution fits the data of a sample is of significant and must be examined prior to any inferential process. The observed failure time data of items are often not wholly available in reliability and life-testing studies. Lowering the expense and period associated with tests is important in statistical tests with censored data. Goodness-of-fit tests for perfect data can no longer be used when the observed failure time data are progressive Type II censored (PC) data. Therefore, we propose goodness-of-fit test statistics and a graphical method based on generalized Lorenz curve for PC data from a location-scale distribution. The power of the proposed tests is then assessed through Monte Carlo simulations. Finally, we analyzed two real data set for illustrative purposes.

The Subjective Assessment Testing of Basic and Transmission Video Quality for Digital Broadcasting Satellite (디지털 위성 방송 기본 화질과 전송 화질의 주관적 평가 시험)

  • 박대철;김용선;유태선;전병민
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • Basic and transmission video quality testing was performed in real-time mode using hardware video codec based on MPEG-2 MP@ML standard including subsequent transmitting and receiving satellite simulator unit. The double-stimulus Impairment scale method and the double-stimulus continous quality scale method based on CCIR 500-5 were used as an evaluation method. The whole digital broadcasting satellite system consisting of MPEG-2 codec, system mux/demux, channel codec, channel, modem, antenna, etc. was put into the overall video quality testbed and the basic and transmission error quality assessment was performed at various bitrates and BER for an integrated system performance evaluation. In transmission error video quality testing, transmission error video quality maintained on average above 3.9 point on the 5-point scale. The low-bit rate quality such as film mode(@2Mbps) highly depended on the statitical characteristics of video source and maintained on average around 2.7 point.

  • PDF

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment (사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법)

  • Kwon, SoonHyun;Park, Dongwan;Bang, Hyochan;Park, Youngtack
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.54-67
    • /
    • 2015
  • Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.

Research on System Architecture and Simulation Environment for Cyber Warrior Training (사이버전사의 훈련을 위한 시스템 구축 방안 연구)

  • Ahn, Myung Kil;Kim, Yong Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.533-540
    • /
    • 2016
  • It is important to establish the environment for cyber warrior training, testing support and effectiveness analysis in order to cope with sharply increasing cyber threat. However, those practices cannot be easily performed in real world and are followed with many constraints. In this paper, we propose a live/virtual M&S-based system for training/testing and constructive M&S-based system for effectiveness analysis to provide an environment similar to real world. These can be utilized to strengthen the capability to carry out cyber war and analyze the impact of cyber threat under the large-scale networks.

An experimental study on the oriented mechanical properties of aluminum micro thin foil material (알루미늄 마이크로 박판소재의 방향성에 관한 실험적 연구)

  • Lee H. J.;Lee N. K.;Choi S.;Lee H. W.;Choi T. H.;Hwang J. H.;Kwag D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • This paper is concerned with the precision material property measurement of a micro metal thin foil that is used in MEMS technology. Since these MEMS components require great precision and accuracy, evaluation of reliability such as the lift cycle endurance test, impact test, and residual stress test is necessary for these components. However, in practice, real reliability tests are not easy to perform due to consideration of various factors. Rather than actual testing, it would be much easier to evaluate the reliability of components by the analytical approach. Although the analytical method is utilized by software tools, it is obviously necessary to acquire fundamental properties of materials through real test methods. In this paper, the oriented mechanical properties of aluminum thin foil are measured by nano scale material property measurement system.

  • PDF