• Title/Summary/Keyword: real time-PCR (rPCR)

Search Result 360, Processing Time 0.029 seconds

Detection of Anthracnose Fungus Colletotrichum circinans by Conventional PCR and Real-time PCR (일반 PCR과 Real-time PCR을 이용한 탄저병균 Colletotrichum circinans 검출)

  • Kim, Jun Young
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.467-477
    • /
    • 2018
  • Colletotrichum circinans, an anthracnose pathogen, causes serious damage to onions worldwide. In this study, specific molecular markers were developed to detect C. circinans accurately and quickly with both conventional and real-time PCR methods. The cirTef-F/cirTef-R and cirTu-F/cirTu-R primer sets, which are specific for C. circinans, were constructed by analyzing $tef-1{\alpha}$ and ${\beta}-tubulin$ genes in the fungus. Using the conventional PCR method, 100 pg and 1 ng of fungal DNA could be detected using the cirTef-F/cirTef-R and cirTu-F/cirTu-R sets, respectively. Using the real-time PCR method, 10 pg and 100 pg of fungal DNA could be detected more sensitively with the cirTef-F/cirTef-R and cirTu-F/cirTu-R sets, respectively. Detection of C. circinans from the artificially infected onion seeds was possible by using both conventional and real-time PCR methods and the developed cirTef-F/cirTef-R primer set. The PCR markers specific for C. circinans developed in this study may enhance the efficiency of fungal pathogen detection in imported vegetables and seeds.

Evaluation of an Automated ELISA (VIDAS(R)) and Real-time PCR by Comparing with a Conventional Culture Method for the Detection of Salmonella spp. in Steamed Pork and Raw Broccoli Sprouts (편육과 브로콜리싹에서 Salmonella spp. 검출을 위한 배지법과 Real-time PCR 및 신속 검사키트(VIDAS(R))의 비교검증)

  • Hyeon, Ji-Yeon;Hwang, In-Gyun;Kwak, Hyo-Sun;Park, Jong-Seok;Heo, Seok;Choi, In-Soo;Park, Chan-Kyu;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.506-512
    • /
    • 2009
  • Salmonellosis is an important worldwide foodborne infectious disease that is transmitted by many food vehicles including raw and processed animal products and fresh produce. In this study, the effectiveness of automated ELISA ($VIDAS^{(R)}$) and realtime PCR in the detection of Salmonella spp. in steamed pork and raw broccoli sprouts was evaluated by comparing their results with those of a conventional culture method. Bulk samples (500 g) of steamed pork and raw broccoli sprouts were inoculated with various levels of Salmonella and divided into 20 samples (25 g each). All the samples, including the controls, were analyzed using a conventional culture method, $VIDAS^{(R)}$, and real-time PCR to detect the presence of Salmonella. In addition, the levels of background flora in the steamed pork and the raw broccoli sprouts were determined. In the steamed pork that contained less than 100 CFU/g of aerobic bacteria, all three methods detected low levels of Salmonella without a statistical difference in their performance. In the broccoli sprouts with high quantities of background flora (ca. $6.7{\times}10^7$ CFU/g), however, all three methods were unable to detect low levels of Salmonella, and real-time PCR and $VIDAS^{(R)}$ more sensitively detected Salmonella than the culture method, with significant statistical differences. In conclusion, $VIDAS^{(R)}$ and real-time PCR could be superior to conventional culture methods in detecting Salmonella in food with high levels of background flora.

Identification of Hanwoo and Holstein meat using MGB probe based real-time PCR associated with single nucleotide polymorphism (SNP) in Melanocortin 1 receptor (MC1R) gene (소 모색관련 MC1R 유전자의 SNP와 관련한 MGB probe에 기초한 real-time PCR을 이용한 한우육과 Holstein육의 판별)

  • Park, Sung-Do;Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo meat, we performed a single nucleotide polymorphism (SNP) analysis in Melanocortin 1 receptor (MC1R) gene using TaqMan$^{(R)}$ MGB probe-based real-time PCR. Two specific probes (one for Hanwoo and the other for Holstein and Black angus) were designed. At the 5' end of 2 TaqMan$^{(R)}$ MGB probes, 6-carboxyfluorescein (FAM) was labeled for Hanwoo, and VIC for Holstein and Black angus. As a result, Hanwoo samples showed FAM-positive signal only, whereas other samples showed VIC-positive. This result suggests that the TaqMan$^{(R)}$ MGB probe based real-time PCR technique would be very accurate, easy and reproducible method to discriminate between Hanwoo meat and Holstein/Black angus meat.

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

Detection of a Microsporidium, Nosema ceranae, from Field Population of the Bumblebee, Bombus terrestris, via Quantitative Real-Time PCR (서양뒤영벌 야외개체군에서 Real-Time PCR을 이용한 Nosema ceranae의 검출)

  • Lee, Dae-Weon
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2013
  • The bumblebee, Bombus terrestris, has played an important role as one of the alternative pollinators since the outbreak of honeybee collapse disorder. Recently, pathogens and parasites such as viruses, bacteria and mites, which affect the life span and fecundity of their host, have been discovered in B. terristris. In order to detect the microsporidian pathogen, Nosema spp. in the field populations of B. terristris, we collected adults and isolated their genomic DNA for diagnostic PCR. The PCR primers specific for Nosema spp. were newly designed and applied to gene amplification for cloning. Only small subunit ribosomal RNA (SSU rRNA) gene of N. ceranae was successfully amplified among examined genes and sequenced, which indicates that N. ceranae mainly infects the examined field population of B. terristris. To detect of SSU rRNA gene, two regions of SSU rRNA gene were selected by primary PCR analysis and further analyzed in quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis demonstrated that SSU rRNA of N. ceranae was detected at concentration as low as $0.85ng/{\mu}l$ genomic DNA. This result suggests that the detection via qRT-PCR can be applied for the rapid and sensitive diagnosis of N. ceranae infection in the field population as well as risk assessment of B. terristris.

Study on the Enumeration of Legionella in Environmental Water Samples Using Real-time PCR (Real-time PCR을 이용한 환경 중 물 시료의 레지오넬라 분석법 연구)

  • Lee, Jung-Hee;Park, Myoung-Ki;Kim, Yun-Sung;Yun, Hee-Jeong;Lee, Chang-Hee;Jeong, Ah-Yong;Yoon, Mi-Hye
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.511-519
    • /
    • 2019
  • Objectives: The standard method for the enumeration of environmental Legionella is culturing, which has several disadvantages, including long incubation and poor sensitivity. The purpose of this study is to demonstrate the usefulness of real-time PCR and to improve the standard method. Methods: In 200 environmental water samples, a real-time PCR and culture were conducted to detect and quantify Legionella. Using with the results of the survey, we compared the real-time PCR with the culture. Results: Each real-time PCR assay had 100% specificity and excellent sensitivity (5 GU/reaction). In the culture, 36 samples were positive and 164 samples were negative. Based on the results of the culture, real-time PCR showed a high negative predictive value of 99%, 35 samples were true positive, 105 samples were true negative, 59 samples were false positive and one sample was a false negative. Quantitative analysis of the two methods indicated a weak linear correlation ($r^2=0.29$, $r^2=0.61$, respectively). Conclusions: Although it is difficult to directly apply quantitative analysis results of real-time PCR in the enumeration of environmental Legionella, it can be used as a complementary means of culturing to rapidly screen negative samples and to improve the accuracy of diagnosis.

Novel Real Time PCR Method for Detection of Plasmodium vivax (새로운 Real Time PCR 방법을 통한 Malaria(Plasmodium vivax)의 검출)

  • Ki, Yeon-Ah;Kim, So-Youn
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.148-153
    • /
    • 2005
  • Malaria is a re-emerging infectious disease that is spreading to areas where it had been eradicated, such as Eastern Europe and Central Asia. To avoid the mortality from malaria, early detection of the parasite is a very important issue. The peripheral blood smear has been the gold standard method for the diagnosis of malaria infection. Recently, several other methods have been introduced for quantitative detection of malaria parasites. Real time PCR that employs fluorescent labels to enable the continuous monitoring of PCR product formation throughout the reaction has recently been used to detect several human malaria parasites. 18S rRNA sequences from malaria parasites have been amplified using Taqman real time PCR assay. Here, a SYBR Green-based real time quantitative PCR assay for the detection of malaria parasite-especially, Plasmodium vivax - was applied for the evaluation of 26 blood samples from Korean malaria patients. Even though SYBR Green-based real time PCR is easier and cheaper than Taqman-based assay, SYBR Green-based assay cannot be used because 18S rRNA cannot be specifically amplified using 1 primer set. Therefore, we used DBP gene sequences from Plasmodium vivax, which is specific for the SYBR Green based assays. We amplified the DBP gene from the 26 blood samples of malaria patients using SYBR Green based assay and obtained the copy numbers of DBP genes for each sample. Also, we selected optimal reference gene between ACTB and B2M using real time assay to get the stable genes regardless of Malaria titer. Using selected ACTB reference genes, we successfully converted the copy numbers from samples into titer, ${\sharp}$ of parasites per microliter. Using the resultant titer from DBP based SYBER Green assay with ACTB reference gene, we compared the results from our study with the titer from Taqman-based assay. We found that our results showed identical tendency with the results of 18S rRNA Taqman assay, especially in lower titer range. Thus, our DBP gene-utilized real time assay can detect Plasmodium vivax in Korean patient group semi-quantitatively and easily.

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA (두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji Young;Kwon, Ki sung;Kim, Gun Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.280-288
    • /
    • 2018
  • In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.

Rapid Detection of Salmonella spp. in Fresh-Cut Cabbage by Real-Time PCR (Real-Time PCR을 이용한 신선편이 양배추에서 Salmonella spp.의 신속검출)

  • Bang, Mi-Kyung;Park, Seung-Ju;Kim, Yun-Ji;Kim, Ji-Gang;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1522-1527
    • /
    • 2010
  • This study was conducted to find out the minimal time needed for detection of Salmonella spp. which exist at very low concentration in foods by using real-time PCR. The sal-F and sal-R sequences were used as primers and sal-P was used as a probe. The detection limit of Salmonella spp. was $3.77{\times}10^2\;cfu/mL$ in buffered peptone water (BPW). Microbial growth was monitored after artificially inoculated Salmonella spp. into BPW. The obtained growth curve was well fitted with the equation, y=$0.0127x^2$+0.5927x-0.4317 ($R^2$=0.99), if assuming that 1 cell exists in 25 g sample (0.04 cfu/mL). The microbial concentration will be reduced to 10 fold by adding BPW during sample treatment, so actual initial concentration at the starting point of enrichment is 0.004 cfu/mL. At this condition, real-time PCR detection would be possible only when microbial concentration increase occurs to exceed the detection limit (377 cfu/mL). The time needed for microbial increase was calculated from the growth curve equation as 7 hours and 20 minutes. Therefore the total time required for detection was less than 10 hours including the PCR operating time.

Quantification of White Spot Syndrome Virus (WSSV) in Seawaters Using Real-Time PCR and Correlation Analyses between WSSV and Environmental Parameters (Real-Time PCR을 이용한 해수 존재 흰반점 바이러스의 정량 및 양식 환경인자와의 상관관계 분석)

  • Song, Jae-Ho;Choo, Yoe-Jin;Cho, Jang-Cheon
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • White Spot Syndrome Virus (WSSV) is one of the most virulent viral agents in the penaeid shrimp culture industry. In this study, WSSV in a Fenneropenaeus chinensis shrimp farm and an adjacent seawater were concentrated using a membrane filtration and quantified using the quantitative real-time PCR (QRT-PCR) method with newly designed primers and Taqman probe. Sensitivity of primers and probe was proven by WSSV standard curve assay in QRT-PCR. In order to demonstrate the relationship between WSSV and environmental parameters, physicochemical and biological parameters of the farm and influent seawaters were monitored from June to September, 2007. The abundance of WSSV ranged 3,814-121,546 copies per 1 liter of seawater, which was correlated with fecal enterococci ($r^2=0.9$, p=0.02), chlorophyll ${\alpha}$ ($r^2=0.8$, p=0.03) and $BOD_5$ ($r^2=0.8$, p=0.07). Subsequently, it is concluded that the QRT-PCR method using Taqman probe established in this study was efficient to clarify the quantification of WSSV in seawaters. Statistical analyses of environmental parameters obtained in this study also showed that the abundance of WSSV was correlated with several biological parameters rather than physicochemical parameters.