• Title/Summary/Keyword: real time wireless sensor

Search Result 539, Processing Time 0.03 seconds

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Real-Time Sensor Monitoring Service based on ECA (ECA 기반 센서 네트워크 실시간 모니터링 서비스)

  • Kim, Jung-Yee
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.87-92
    • /
    • 2012
  • Wireless sensor network is a technology that collects the information about object in real-time. Sensor data has a characteristic that is generated an unprecedented volume data in short time. Analysis is essential to define the relationship between the data, including more of the data from a large volume data stream which is acquired from the sensor. In order to effectively handle the sensor data stream, in this paper, using ECA rules to organize data in a meaningful and more practical real-time monitoring systems is proposed.

Real-Time Communication of Periodic Messages on Wireless Sensor and Actor Networks (무선 센서-엑터 네트워크에서 주기적 메시지의 실시간 전송)

  • Ngo, Dao Quan;Lee, Sang-Jin;Kim, Myung-Kyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.291-296
    • /
    • 2008
  • Wireless network technologies are becoming more widely used in industrial environment. The industrial communication system requires a real-time delivery of messages. The sensors periodically senses the physical environment and wants to deliver the data in real-time to the sink. This paper proposes a real-time protocol for periodic messages on wireless sensor and actor networks to be used in industrial communications. The proposed protocol delivers the data message using the shortest path from the source and the nearest actor. The protocol considers the energy consumption by reducing the number of broadcast messages during flooding. We have evaluated the performance of the proposed protocol using QualNet simulator. The simulation results show that the data messages have been delivered in real-time and the number of broadcast messages is reduced from 90% to 35% compared the existing protocols.

  • PDF

Implementation and Performance Analysis of Real-time Multi-source Sensor Data Management System Based on Wireless Sensor Network (무선 센서네트워크 기반 실시간 다중소스 센서데이터 관리시스템 구현 및 성능분석)

  • Kang, Moon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1003-1011
    • /
    • 2011
  • In this paper, a real-time multi-source sensor data management system based on wireless sensor network is proposed and implemented. The proposed management system is designed to transmit the wireless data to the server in order to monitor and control the multi-source target's status efficiently by analyzing them. The proposed system is implemented to make it possible to control and transmit the wireless sensor data by classifying them, of which data are issued from the clustered sources composed of a number of the remote multiple sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple data sources. From these results, it is verified that the proposed system has a good performance.

Extension of ReInForM Protocol for (m,k)-firm Real-time Streams in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • For real-time wireless sensor network applications, it is essential to provide different levels of quality of service (QoS) such as reliability, low latency, and fault-tolerant traffic control. To meet these requirements, an (m,k)-firm based real-time routing protocol has been proposed in our prior work, including a novel local transmission status indicator called local DBP (L_DBP). In this paper, a fault recovery scheme for (m,k)-firm real-time streams is proposed to improve the performance of our prior work, by contributing a delay-aware forwarding candidates selection algorithm for providing restricted redundancy of packets on multipath with bounded delay in case of transmission failure. Each node can utilize the evaluated stream DBP (G_DBP) and L_DBP values as well as the deadline information of packets to dynamically define the forwarding candidate set. Simulation results show that for real-time service, it is possible to achieve both reliability and timeliness in the fault recovery process, which consequently avoids dynamic failure and guarantees meeting the end-to-end QoS requirement.

Wireless Sensors Module for Remote Room Environment Monitoring

  • Lee, Dae-Seok;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.449-452
    • /
    • 2005
  • For home networking system with a function of air quality monitoring, a wireless sensor module with several air quality monitoring sensors was developed for indoor environment monitoring system in home networking. The module has various enlargements for various kinds of sensors such as humidity sensor, temperature sensor, CO2 sensor, flying dust sensor, and etc. The developed wireless module is very convenient to be installed on the wall of a room or office, and the sensors in the module can be easily replaced due to well designed module structure and RF connection method. To reduce the system cost, only one RF transmission block was used for sensors' signal transmission to 8051 microcontroller board in time sharing method. In this home networking system, various indoor environmental parameters could be monitored in real time from RF wireless sensor module. Indoor vision was transferred to client PC or PDA from surveillance camera installed indoor or desired site. Web server using Oracle DB was used for saving the visions by web-camera and various data from wireless sensor module.

  • PDF

RREM : Multi-hop Information Based Real-Time Routing Protocol to Support Event Mobility in Wireless Sensor Networks (무선 센서 망에서 실시간 응용의 이벤트 이동성을 지원하기 위한 라우팅 기법)

  • Lee, Soyeon;Lee, Jeongcheol;Park, Hosung;Kong, Jonguk;Kim, Sangha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.688-696
    • /
    • 2013
  • In wireless sensor networks, real-time applications have to ensure the timely delivery of real-time data. Recently, OMLRP (On-demand Multi-hop Look-ahead Routing Protocol) has been proposed to improve the timeliness of wireless sensor networks. The protocol needs initialization time to establish multi-hop information based routing path because it performs incremental look-ahead of the information. Consequently, the protocol deteriorates DDSR (Deadline Delivery Success Ratio) as an event moves because it takes little consideration of event mobility. In this paper, we proposed a Real-time Routing for Events Mobility (RREM) which exploits a data redirection in order to improve the DDSR of moving events. Instead of recollecting muti-hop look-ahead information, the RREM redirects the data to a sensor node holding the information collected in a previous round. We verify the timeliness and energy efficiency of RREM using various MatLab simulations.

Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network (고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템)

  • Kang, Hoyong;Jang, Youn-Seon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.

RT-WISN(Real Time-Wireless Image Sensor Network) based on 802.15.4 (802.15.4기반의 RT-WISN(Real Time-Wireless Image Sensor Network))

  • Lim, Hee-sung;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.287-290
    • /
    • 2009
  • 무선 통신 기술과 하드웨어의 발전으로 인해 무선 센서 네트워크를 위한 센서 노드들은 저전력화 및 소형화되었고, 사용 목적에 따라 많은 연구가 진행되고 있다. 최근 들어서는 온도나 가속도 등의 간단한 정보뿐만 아니라 이미지를 센싱할 수 있는 초소형 카메라 등을 이용한 멀티미디어 센서 네트워크에 대한 연구도 활발히 이루어지고 있다. 이미지 센싱에 있어서는 CCD Sensor에 비해 적은 전력을 소모하고 빠른 전송에 적합한 CMOS Sensor가 최근의 연구에 이용되고 있다. 이러한 추세에서 실시간의 데이터 검출을 위한 센서와 네트워크의 기능이 통합된 프로세서 구조의 기능이 요구되고 있다. 기존의 무선 이미지 전송 기술을 살펴보면 범용성 제어의 사용으로 데이터의 전송 처리를 위한 대역폭이 제한되고, 내부 메모리 또한 적은 용량으로 제한되어 있다. 한 예로 JPEG으로 압축된 이미지라도 데이터의 크기가 수 Kbytes에 이르기 때문에 전체 데이터를 한 번에 전송받지 못해 전송 속도나 패킷 정확도에 있어 효율이 떨어지게 된다. 따라서 실시간의 데이터의 전송에는 부족한 면이 있다. 본 논문에서는 CMOS Sensor Module을 이용하여 RT-WISN을 구성하였다. 구성된 센서 네트워크를 통하여 Peer to Peer에서 이미지의 데이터 크기에 따른 전송 시간을 측정하고 RT-WISN이 실시간 전송에 적합함을 보인다.

  • PDF

Design and Implementation of Real-Time Vehicle Safety System based on Wireless Sensor Networks (무선 센서 네트워크 기반의 실시간 차량 안전 시스템 설계 및 구현)

  • Hong, YouSik;Oh, Sei-JIn;Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wireless sensor networks achieve environment monitoring and controlling through use of small devices of low cost and low power. Such network is comprised of several sensor nodes, each having a microprocessor, sensor, actuator and wired/wireless transceiver inside a small device. In this paper, we employ the sensor networks in order to design and implement a real-time vehicle safety system. Such system can inform the safe velocity in a specific weather condition to drivers in advance through analyzing the weather data collected from sensor networks. As a result, the drivers can prevent effectively accidents by controlling their car speed.

  • PDF