• Title/Summary/Keyword: real time object detection

Search Result 524, Processing Time 0.023 seconds

Development of Runway Cleaning Robot Based on Deep Learning (딥러닝 기반 활주로 청소 로봇 개발)

  • Park, Ga-Gyeong;Kim, Ji-Yong;Keum, Jae-Yeong;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This paper deals with the development of a deep-learning-based runway cleaning robot using an optical camera. A suitable model to realize real-time object detection was investigated, and the differences between the selected YOLOv3 and other deep learning models were analyzed. In order to check whether the proposed system is applicable to the actual runway, an experiment was conducted by making a prototype of the robot and a runway model. As a result, it was confirmed that the robot was well developed because the detection rate of FOD (Foreign Object Debris) and cracks was high, and the collection of foreign substances was carried out smoothly.

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

Real-Time Object Tracking Algorithm based on Minimal Contour in Surveillance Networks (서베일런스 네트워크에서 최소 윤곽을 기초로 하는 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.337-343
    • /
    • 2014
  • This paper proposes a minimal contour tracking algorithm that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. This algorithm perform detection for object tracking and when it transmit image data to server from camera, it minimized communication load by reducing quantity of transmission data. This algorithm use minimal tracking area based on the kinematics of the object. The modeling of object's kinematics allows for pruning out part of the tracking area that cannot be mechanically visited by the mobile object within scheduled time. In applications to detect an object in real time,when transmitting a large amount of image data it is possible to reduce the transmission load.

Enhancement of Physical Modeling System for Underwater Moving Object Detection (이동하는 수중 물체 탐지를 위한 축소모형실험 시스템 개선)

  • Kim, Yesol;Lee, Hyosun;Cho, Sung-Ho;Jung, Hyun-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.72-79
    • /
    • 2019
  • Underwater object detection method adopting electrical resistivity technique was proposed recently, and the need of advanced data processing algorithm development counteracting various marine environmental conditions was required. In this paper, we present an improved water tank experiment system and its operation results, which can provide efficient test and verification. The main features of the system are as follows: 1) All the processes enabling real time process for not only simultaneous gathering of object images but also the electrical field measurement and visualization are carried out at 5 Hz refresh rates. 2) Data acquisition and processing for two detection lines are performed in real time to distinguish the moving direction of a target object. 3) Playback and retest functions for the saved data are equipped. 4) Through the monitoring screen, the movement of the target object and the measurement status of two detection lines can be intuitively identified. We confirmed that the enhanced physical modeling system works properly and facilitates efficient experiments.

Multiple Object Detection and Tracking System robust to various Environment (환경변화에 강인한 다중 객체 탐지 및 추적 시스템)

  • Lee, Wu-Ju;Lee, Bae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.

Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation (효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

Real Time Face detection Method Using TensorRT and SSD (TensorRT와 SSD를 이용한 실시간 얼굴 검출방법)

  • Yoo, Hye-Bin;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.323-328
    • /
    • 2020
  • Recently, new approaches that significantly improve performance in object detection and recognition using deep learning technology have been proposed quickly. Of the various techniques for object detection, especially facial object detection (Faster R-CNN, R-CNN, YOLO, SSD, etc), SSD is superior in accuracy and speed to other techniques. At the same time, multiple object detection networks are also readily available. In this paper, among object detection networks, Mobilenet v2 network is used, models combined with SSDs are trained, and methods for detecting objects at a rate of four times or more than conventional performance are proposed using TensorRT engine, and the performance is verified through experiments. Facial object detector was created as an application to verify the performance of the proposed method, and its behavior and performance were tested in various situations.

AR Anchor System Using Mobile Based 3D GNN Detection

  • Jeong, Chi-Seo;Kim, Jun-Sik;Kim, Dong-Kyun;Kwon, Soon-Chul;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • AR (Augmented Reality) is a technology that provides virtual content to the real world and provides additional information to objects in real-time through 3D content. In the past, a high-performance device was required to experience AR, but it was possible to implement AR more easily by improving mobile performance and mounting various sensors such as ToF (Time-of-Flight). Also, the importance of mobile augmented reality is growing with the commercialization of high-speed wireless Internet such as 5G. Thus, this paper proposes a system that can provide AR services via GNN (Graph Neural Network) using cameras and sensors on mobile devices. ToF of mobile devices is used to capture depth maps. A 3D point cloud was created using RGB images to distinguish specific colors of objects. Point clouds created with RGB images and Depth Map perform downsampling for smooth communication between mobile and server. Point clouds sent to the server are used for 3D object detection. The detection process determines the class of objects and uses one point in the 3D bounding box as an anchor point. AR contents are provided through app and web through class and anchor of the detected object.

Augmented Reality Framework for Data Visualization Based on Object Detection and Digital Twins

  • Pham, Hung;Nguyen, Linh;Huynh, Nhut;Lee, Yong-Ju;Park, Man-Woo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1138-1145
    • /
    • 2022
  • While pursuing digitalization and paperless projects, the construction industry needs to settle on how to make the most of digitized data and information. On-site workers, who currently rely on paper documents to check and review design and construction plans, will need alternative ways to efficiently access the information without using any paper. Augmented Reality is a potential solution where the information customized to a user is aligned with the physical world. This paper proposes the Augmented Reality framework to deliver the information on on-site resources (e.g., workers and equipment) using head-mounted devices. The proposed framework was developed by interoperating Augmented Reality-supported devices and a digital twin platform in which all information related to ongoing tasks is accumulated in real-time. On-site resources appearing in the user's field of view are automatically detected by an object detection algorithm and then assigned to the corresponding information by matching the data in the digital twin platform. Preliminary experiments show the feasibility of the proposed framework. Worker detection results can be visualized on HoloLens 2 in near real-time, and the matching process obtained the accuracy greater than 88%.

  • PDF

High-speed Image Processing for Blurred Image for an Object Detection (블러가 심한 물체 검출을 위한 고속 MMX 영상처리)

  • Lee, Jae-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.177-179
    • /
    • 2005
  • This paper suggests a high-speed blurred blob image inspection algorithm. When we inspect some products using high-resolution camera, the detected blob images usually have severe blur. And the blur makes it hard to detect an object. There are many blur-processing algorithms, but most of them have no real-time property for high-speed applications at all. In this paper, an MMX technology based algorithm is suggested. The suggested algorithm was found to be effective to detect the blurred blob images via many simulations and long time real-plant experiments.

  • PDF