• Title/Summary/Keyword: real impact sounds

Search Result 13, Processing Time 0.021 seconds

Questionnaire Survey on Annoyance of Floor Impact Sound (층간소음 어노이언스에 대한 설문조사)

  • Jeong, Jeong-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.262-265
    • /
    • 2006
  • In order to investigate characteristics of floor impact sound generated in the apartment buildings, questionnaire survey was conducted for respondents living in apartments in 200t. Questions in the surrey were on the characteristics of real impact sounds, subjective annoyance and satisfaction on the heavy and light impact sources. From the survey results, it was found that most annoying time of a day and the space were 8 p.m. to midnight at living room. It was also revealed that the main source of the floor impact sound from the upper floor is a child's jumping and running at from six to nine. More than half of people were not satisfied on the floor impact isolation performance of their own apartments. The percentage of residents who were annoyed by the heavy-weight impact sound such as children's jumping and adult's walking was $5{\sim}10%$ lower than by light-weight impact sound. In addition, females being responded more annoyed by floor impact sound than males.

  • PDF

Floor Impact Noise Characteristics Depending on the Experimental Conditions Using Impact Ball (실험조건에 따른 임팩트 볼의 바닥충격음 변화 고찰)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2011
  • In Japan, bang machine has been considered to have problems about not only the impact force and frequency response which are different from the real impact sources such as children's jumping and running, but also damage in the wooden structure housing. Therefore, a new impactor for lower impact force to prevent demage in wooden structure housing was developed. The impact ball was adopted as the second standard impact source in JIS A 1418-2 and ISO 140-11. In the present study, floor impact sounds generated by impact ball with drop heights in four floors of mock-up building of Building Research Institute (BRI) similar to typical Japanese wooden structure housing were investigated and also compared to jumping sound. The results show that Impact ball sound dropped at 10 cm to 30 cm was most similar to jumping sound. And The impact sound levels at 250 and 500 Hz were more sensitive to drop height than other lower frequencies. The error that may occur from the difference of height of 10 cm up and down based on the standard drop height caused by the impact ball operated by human hands was approx. 1 dB or less only in its value of characteristic, but it must be carefully taken into Impact ball in the Korea Standard.

Study on Analysis of Queen Bee Sound Patterns (여왕벌 사운드 패턴 분석에 대한 연구)

  • Kim Joon Ho;Han Wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • Recently, many problems are occurring in the bee ecosystem due to rapid climate change. The decline in the bee population and changes in the flowering period are having a huge impact on the harvest of bee-keepers. Since it is impossible to continuously observe the beehives in the hive with the naked eye, most people rely on knowledge based on experience about the state of the hive.Therefore, interest is focused on smart beekeeping incorporating IoT technology. In particular, with regard to swarming, which is one of the most important parts of beekeeping, we know empirically that the swarming time can be determined by the sound of the queen bee, but there is no way to systematically analyze this with data.You may think that it can be done by simply recording the sound of the queen bee and analyzing it, but it does not solve various problems such as various noise issues around the hive and the inability to continuously record.In this study, we developed a system that records queen bee sounds in a real-time cloud system and analyzes sound patterns.After receiving real-time analog sound from the hive through multiple channels and converting it to digital, a sound pattern that was continuously output in the queen bee sound frequency band was discovered. By accessing the cloud system, you can monitor sounds around the hive, temperature/humidity inside the hive, weight, and internal movement data.The system developed in this study made it possible to analyze the sound patterns of the queen bee and learn about the situation inside the hive. Through this, it will be possible to predict the swarming period of bees or provide information to control the swarming period.