• Title/Summary/Keyword: real forest

Search Result 334, Processing Time 0.028 seconds

Relaying of 4G Signal over 5G Suitable for Disaster Management following 3GPP Release 18 Standard

  • Jayanta Kumar Ray;Ardhendu Shekhar Biswas;Arpita Sarkar;Rabindranath Bera;Sanjib Sil;Monojit Mitra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.369-390
    • /
    • 2023
  • Technologies for disaster management are highly sought areas for research and commercial deployment. Landslides, Flood, cyclones, earthquakes, forest fires and road/train accidents are some causes of disasters. Capturing video and accessing data in real time from the disaster site can help first responders make split second decisions which may save human lives and valuable resource destructions. In this context the communication technologies performing the task should have high bandwidth and low latency which only 5G can deliver. But unfortunately in India, deployment of the 5G mobile communication systems is yet to give a shape and again in remote areas unavailability of 4G signals is still severe. In this situation the authors have proposed, simulated and experimented a 4G-5G communication scheme where from the disaster site the signals will be transmitted by a 5G terminal to a nearby 4G-5G gateway installed in a mobile vehicle. The received 5G signal will be further relayed by the 4G-5G gateway to the fixed 4G base station for onward transmission towards the disaster management station for decision making, deployment and relief monitoring. The 4G-5G gateway acts as a relay and converter of 5G signal to 4G signal and vice versa. This relayed system can be further mounted on a vehicle mounted relay (VMR) as proposed by 3GPP in Release 18. The scheme is also in the same line of context with Verizon's, "Tactical Humanitarian Operations Response" (THOR) vehicle concept. The performance of the link is studied in different channel conditions, the throughput achieved is superb. The authors have implemented the above mentioned system towards smart campus networking and monitoring landslides activities which are common in their regions.

Linkage of Numerical Analysis Model and Machine Learning for Real-time Flood Risk Prediction (도시홍수 위험도 실시간 표출을 위한 수치해석 모형과 기계학습의 연계)

  • Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.332-332
    • /
    • 2021
  • 도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.

  • PDF

Comparison of Machine Learning Techniques in Urban Weather Prediction using Air Quality Sensor Data (실외공기측정기 자료를 이용한 도심 기상 예측 기계학습 모형 비교)

  • Jong-Chan Park;Heon Jin Park
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.39-49
    • /
    • 2021
  • Recently, large and diverse weather data are being collected by sensors from various sources. Efforts to predict the concentration of fine dust through machine learning are being made everywhere, and this study intends to compare PM10 and PM2.5 prediction models using data from 840 outdoor air meters installed throughout the city. Information can be provided in real time by predicting the concentration of fine dust after 5 minutes, and can be the basis for model development after 10 minutes, 30 minutes, and 1 hour. Data preprocessing was performed, such as noise removal and missing value replacement, and a derived variable that considers temporal and spatial variables was created. The parameters of the model were selected through the response surface method. XGBoost, Random Forest, and Deep Learning (Multilayer Perceptron) are used as predictive models to check the difference between fine dust concentration and predicted values, and to compare the performance between models.

English Predicate Inversion: Towards Data-driven Learning

  • Kim, Jong-Bok;Kim, Jin-Young
    • Journal of English Language & Literature
    • /
    • v.56 no.6
    • /
    • pp.1047-1065
    • /
    • 2010
  • English inversion constructions are not only hard for non-native speakers to learn but also difficult to teach mainly because of their intriguing grammatical and discourse properties. This paper addresses grammatical issues in learning or teaching the so-called 'predicate inversion (PI)' construction (e.g., Equally important in terms of forest depletion is the continuous logging of the forests). In particular, we chart the grammatical (distributional, syntactic, semantic, pragmatic) properties of the PI construction, and argue for adata-driven teaching for English grammar. To depart from the arm-chaired style of grammar teaching (relying on author-made simple sentences), our teaching method introduces a datadriven teaching. With total 25 university students in a grammar-related class, students together have analyzed the British Component of the International Corpus of English (ICE-GB), containing about one million words distributed across a variety of textual categories. We have identified total 290 PI sentences (206 from spoken and 87 from written texts). The preposed syntactic categories of the PI involve five main types: AdvP, PP, VP(ed/ing), NP, AP, and so, all of which function as the complement of the copula. In terms of discourse, we have observed, supporting Birner and Ward's (1998) observation that these preposed phrases represent more familiar information than the postposed subject. The corpus examples gave us the three possible types: The preposed element is discourse-old whereas the postposed one is discourse-new as in Putting wire mesh over a few bricks is a good idea. Both preposed and postposed elements can also be discourse new as in But a fly in the ointment is inflation. These two elements can also be discourse old as in Racing with him on the near-side is Rinus. The dominant occurrence of the PI in the spoken texts also supports the view that the balance (or scene-setting) in information structure is the main trigger for the use of the PI construction. After being exposed to the real data and in-depth syntactic as well as informationstructure analysis of the PI construction, it is proved that the class students have had a farmore clear understanding of the construction in question and have realized that grammar does not mean to live on by itself but tightly interacts with other important grammatical components such as information structure. The study directs us toward both a datadriven and interactive grammar teaching.

Development of Elemental Technology for the Revitalization of Heavy Metal Contaminated Soil Remediated by Soil Washing (중금속 오염 토양의 토양세척 정화 후 토양 건강성 회복을 위한 요소 기술 개발)

  • Seung-Hyun Lee;Jong-Hwan Lee;Woo-Chun Lee;Sang-Woo Lee;Soon-Oh Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.36-50
    • /
    • 2023
  • Soil health can deteriorate through both contamination and remediation. Accordingly, revitalization processes are needed to reuse or recycle the remediated soil. The study was conducted to assess the changes in soil health parameters of heavy metals-contaminated soil during soil washing process. In addition, unit processes were proposed to improve the quality of the remediated soil relevant to its reclamation purposes, such as agricultural and forest lands. A total of 21 indicators were used to determine whether the soil health was degraded or recovered. The performance of 6 amendments in improving soil health was quantitatively evaluated according to their dosage and application duration. Finally, the experimental results were assessed by simple regression analyses to determine the statistical significance and relative performance of each amendment. The results indicated that 18 health indicators out of 21 deteriorated through the soil washing process. Based on the results, it is recommended that several effective amendments be complementarily combined and applied in real applications because use of single amendment does not likely improve the quality of remediated soils.

Investigation of pile group response to adjacent twin tunnel excavation utilizing machine learning

  • Su-Bin Kim;Dong-Wook Oh;Hyeon-Jun Cho;Yong-Joo Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.517-528
    • /
    • 2024
  • For numerous tunnelling projects implemented in urban areas due to limited space, it is crucial to take into account the interaction between the foundation, ground, and tunnel. In predicting the deformation of piled foundations and the ground during twin tunnel excavation, it is essential to consider various factors. Therefore, this study derived a prediction model for pile group settlement using machine learning to analyze the importance of various factors that determine the settlement of piled foundations during twin tunnelling. Laboratory model tests and numerical analysis were utilized as input data for machine learning. The influence of each independent variable on the prediction model was analyzed. Machine learning techniques such as data preprocessing, feature engineering, and hyperparameter tuning were used to improve the performance of the prediction model. Machine learning models, employing Random Forest (RF), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM, LGB) algorithms, demonstrate enhanced performance after hyperparameter tuning, particularly with LGB achieving an R2 of 0.9782 and RMSE value of 0.0314. The feature importance in the prediction models was analyzed and PN was the highest at 65.04% for RF, 64.81% for XGB, and PCTC (distance between the center of piles) was the highest at 31.32% for LGB. SHAP was utilized for analyzing the impact of each variable. PN (the number of piles) consistently exerted the most influence on the prediction of pile group settlement across all models. The results from both laboratory model tests and numerical analysis revealed a reduction in ground displacement with varying pillar spacing in twin tunnels. However, upon further investigation through machine learning with additional variables, it was found that the number of piles has the most significant impact on ground displacement. Nevertheless, as this study is based on laboratory model testing, further research considering real field conditions is necessary. This study contributes to a better understanding of the complex interactions inherent in twin tunnelling projects and provides a reliable tool for predicting pile group settlement in such scenarios.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Analysis of Water Relations of Economic Oak Species by Hydraulic Architecture Method (Hydraulic architecture를 이용한 참나무속 주요 수종의 수분 특성 분석)

  • Kwon, Ki Won;Choi, Jeong Ho;Kim, Sun Ah
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.108-119
    • /
    • 1996
  • Several parameters of hydraulic architecture relating to hydraulic conductance in xylem vessels were investigated in the current-year shoots of six species of deciduous oak trees. The above parameters were also investigated in the sprouts of Quercus mongolica and Q. variabilis, as well as in the seedlings of Q. mongolica and Q. acutissima. The values of specific conductivity, leaf specific conductivity and Hagen-Poiseuille's relative hydraulic conductivity relating to vessel diameter of Q. dentata were the highest in all of the species studied. The above values of most of the species studied were higher in May-June than in September-October because of increasing the vessel embolism by cavitation and so on through the growing season. The estimated values of relative hydraulic conductivity of vessel by Hagen-Poiseuille's empirical equation and the real values of hydraulic conductivity presented positive relationships in most of the species studied. Huber value and leaf specific conductity using leaf area or leaf weight generally exhibited similar patterns each other even if having some exceptions. The hydraulic conductances of sprouting shoots were much better than those of normal growing shoots in Q. rnongolica and Q. variabilis. The specific conductivity and leaf specific conductivity were rapidly decreased by the vessel embolism through cavitating just after cutting the shoots in Q. mongolica and Q. acutissima seedlings. Diurnal changes of the conductivities in the seedlings of Q. mongolica and Q. acutissima presented the possibility of their self-controlling of conductance by active moisture absorption under mild water stress. Specific conductivity and leaf specific conductivity, and so on of Q. acutissima seedlings subjected to periodical moisture stress or not have decreased through the growing season, but the influences of moisture stress to the conductance were not proved definitely because of influencing similarly and simultaneously to the development of xylem and leaf having inverse relation in the influences. The values of conductivities were higher generally in middle or upper parts of stems than root collar in the seedlings.

  • PDF

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.