• Title/Summary/Keyword: real fitting

Search Result 254, Processing Time 0.023 seconds

Comparison of Clinical Usefulness of Program-Assisted and Real Ear Measurement-Assisted Hearing Aids Fitting (프로그램과 실이 측정을 이용한 보청기 적합의 임상적 유용성의 비교)

  • Chang, Young-Soo;Jung, Hye Im;Cho, Yang-Sun
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.61 no.12
    • /
    • pp.663-668
    • /
    • 2018
  • Background and Objectives The main objectives of this study were to determine the clinical usefulness of the program-assisted and real ear measurement (REM)-assisted fitting of hearing aids. Subjects and Method Fifteen participants with moderate to moderately severe hearing loss were enrolled in this study. Objective and subjective fitting results were assessed to compare the benefits between the program-assisted fitting (using a software fitting program) and the REM-assisted fitting. Real ear insertion gain (REIG), sound-field audiometry using warble tone, and Korean Hearing in Noise Test (K-HINT) were performed as objective tests. Sound quality rating was performed as a subjective test. Results In the program fitting, 48.89% of fitting points failed to come within ${\pm}10dB$ of the REIG target. In the REM fitting, however, the percentage of failure significantly decreased to 23.33% (p=0.013). In K-HINT test, the reception threshold for speech in quiet situation significantly decreased from 50.1 dB HL with the program fitting to 44.7 dB HL after the REM fitting (p<0.001). In front noise condition, signal-to-noise ratio improved from 4.53 dB to 3.50 dB with the REM fitting without statistical significance (p=0.099). In the sound quality rating, the REM fitting ($4.27{\pm}0.56$) showed a significantly better sound quality ratings than the program fitting ($3.69{\pm}0.74$) (p=0.017). Conclusion The REM fitting showed better results in both subjective and objective measurements than the program fitting.

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

A Study on i-Fashion 3D Avatar's Consumer satisfaction & Comparison of 3D and Direct Masurement - Based of Domestic University Students

  • Choi, Eunhee;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.421-428
    • /
    • 2015
  • This research is to understand customer satisfaction with virtual fitting based on a 3D body scanner and avatars as well as differences between avatars and the 'real me'. To this end, this research examined Korean college students to facilitate 3D body scanning, avatar generation and surveys. The author used 3D body scan data with direct measurements to identify differences between the 3D body scan data-based 'my avatar' and 'real me' in the virtual dress fitting system. The survey results on 'the level of customer awareness on 3D body scanner' found that the majority of both genders did not know about it and indicated a lower usability to incorporate IT technology into the fashion industry. The question in the 3D body scanning and avatar found an affirmative attitude. Satisfaction levels on the 3D avatars' similarity with 'own body' and garment fitting were positive and indicated a need for further technological improvements to express the avatars identical to customers' own body. More research is necessary for the accuracy of sizes for 3D body scanning that measure body sizes while wearing clothes. Avatars based on such datamay be less similar to 'own body' and cause customer dissatisfaction. Thus, further technology development is required to narrow gaps using data to make avatars that provide more accurate virtual fitting simulation services to customers.

Exploring Variables Affecting the Clothing Pressure of Compression Garment -A Comparison of Actual Garments and Virtual Garments- (밀착의복 의복압에 영향을 미치는 변인 탐색 -실제착의와 가상착의 비교-)

  • Nam Yim Kim;Hyojeong Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1080-1095
    • /
    • 2023
  • Three-dimensional virtual fitting has become a trending practice in the fashion industry because of its productivity benefits, allowing garments to be virtually worn by avatar models without physical production. This study analyzed the variables influencing clothing pressure in both real and virtual fittings to expand the potential utility of pressure data derived from the latter. For this purpose, six sets of compression garments were created by combining two types of tricot fabrics and three types of reduced-pattern tops, with the clothing for real and virtual fittings having identical dimensions. Focus was directed to analyzing the correlation among clothing pressure, surface area deformation, and the mechanical properties of the fabrics. In real fittings, clothing pressure was influenced by multiple factors, including garment design, pattern reduction ratio, body shape, and fabric properties, consistent with existing knowledge. In virtual fittings, however, only the digital mechanical characteristics of the fabrics significantly influenced clothing pressure. The findings suggest that a more reliable implementation of clothing pressure in virtual fitting programs necessitates an approach that considers the complex structural information of garments.

Efficient CUDA Implementation of Multiple Planes Fitting Using RANSAC (RANSAC을 이용한 다중 평면 피팅의 효율적인 CUDA 구현)

  • Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.388-393
    • /
    • 2019
  • As a fiiting method to data with outliers, RANSAC(RANdom SAmple Consensus) based algorithm is widely used in fitting of line, circle, ellipse, etc. CUDA is currently most widely used GPU with massive parallel processing capability. This paper proposes an efficient CUDA implementation of multiple planes fitting using RANSAC with 3d points data, of which one set of 3d points is used for one plane fitting. The performance of the proposed algorithm is demonstrated compared with CPU implementation using both artificially generated data and real 3d heights data of a PCB. The speed-up of the algorithm over CPU seems to be higher in data with lower inlier ratio, more planes to fit, and more points per plane fitting. This method can be easily applied to a wide variety of other fitting applications.

A Study on the Comparison of 3D Virtual Clothing and Real Clothing by Neckline Type (네크라인 종류에 따른 3D 가상착의와 실제착의 비교 연구)

  • Nam, Young-Ran;Kim, Dong-Eun
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.247-260
    • /
    • 2021
  • While it is an important element of clothing construction, research has so far been very limited on the similarities between virtual and real clothing in terms of the type of neckline. The purpose of this study is to verify the similarity, accuracy of virtualization, and actuality of neckline, which all play an important role in individual impressions and image formation, and require considerable modification when fitting real samples. A total of 5 neckline models were selected through the analysis of dress composition textbooks. The selected designs were then planned and manufactured in muslin. The specimen clothes were then tested on a female model in her 20s. 2 kinds of virtual bodies were created in order to compare the real and the virtual dressing. The first virtual body was made through an Artec 3D Eva scan of the model, and the other was made by entering the model's measurements in a CLO 3D program. A visual image of the front, side, and back image of both the real and virtual dressing were subsequently collected. The collected images were then evaluated by 20 professional fashion workers who checked the similarity between the real and the virtual versions. The current study found that the similarity between the actual and virtual wearing of the five neckline designs with reality appeared higher with the virtual wearing image using the 3D-scanned body. The results of this study could provide further information on the selection of appropriate avatars to clothing companies that check the fit of clothing by utilizing 3D virtualized programs.

An Improved Distributed Equivalent Circuit Modeling for RF Components by Real-Coefficient AFS Technique

  • Kim, Koon-Tae;Ko, Jae-Hyeong;Paek, Hyun;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.408-413
    • /
    • 2011
  • In this paper, a real-coefficient approach to Adaptive Frequency Sampling (AFS) technique is developed for efficient equivalent circuit modeling of RF components. This proposed method is advantageous than the vector fitting technique and the conventional AFS method in terms of fewer samples leading to a lower order of a rational function on a given data and to a direct conversion to an equivalent circuit for PSPICE(Personal Simulation Program with Integrated Circuit Emphsis) simulation, respectively. To validate the proposed method, the distributed equivalent circuit of a presented multi-layered RF low-pass filter is obtained using the proposed real-coefficient AFS, and then comparisons with EM simulation and circuit simulation for the device under consideration are achieved.

A Data Fitting Technique for Rational Function Models Using the LM Optimization Algorithm (LM 최적화 알고리즘을 이용한 유리함수 모델의 데이터 피팅)

  • Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.768-776
    • /
    • 2011
  • This paper considers a data fitting problem for rational function models using the LM (Levenberg-Marquardt) optimization method. Rational function models have various merits on representing a wide range of shapes and modeling complicated structures by polynomials of low degrees in both the numerator and denominator. However, rational functions are nonlinear in the parameter vector, thereby requiring nonlinear optimization methods to solve the fitting problem. In this paper, we propose a data fitting method for rational function models based on the LM algorithm which is renowned as an effective nonlinear optimization technique. Simulations show that the fitting results are robust against the measurement noises and uncertainties. The effectiveness of the proposed method is further demonstrated by the real application to a 3D depth camera calibration problem.

A Study on the Fitting of LSP(Line Spectrum Pairs) Parameter using Frequency Scaling (Frequency Scaling을 통한 LSP 파라미터 Fitting에 관한 연구)

  • 민소연;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.801-804
    • /
    • 2001
  • LSP 파라미터는 음성코덱(codec)이나 인식기에서 음성 신호를 분석하여 전송형이나 저장형 파라미터로 변환되어, 주로 저전송률 음성부호화기에 사용된다. 그러나 LPC 계수를 LSP로 변환하는 방법이 복잡하여 계산시간이 많이 소요된다는 단점이 있다[1]. 기존의 LSP 변환 방법 중 음성 부호화기에서 주로 사용하는 real root 방법은 근을 구하기 위해 주파수 영역을 순차적으로 검색하기 때문에 계산시간이 많이 소요되는 단점을 갖는다. 본 논문에서 비교 평가한 알고리즘은 첫 번째, 기존의 real root 알고리즘, 두 번째는, LSP 파라미터의 분포 특성을 조사하여 이를 토대로 검객구간의 순서와 검색간격을 달리한 경우, 세 번째는 검색 시 mel scale을 사용한 알고리즘이다. 실험결과, 기존의 real root 방식에 비하여 두 가지 방식 모두가 변환시간의 40% 이상이 감소되는데 반하여 통일한 관을 찾음을 알 수가 있었고, 특히 분포특성을 이용하여 검색순서와 간격조절을 한 경우에 있어서, 기존의 방식보다 40%이상이 감소되었다.

  • PDF

Development of small petite-size women's jackets in their 20s to 30s (20~30대 small petite-size 여성을 위한 재킷 제품개발)

  • Yujin Lee;Jeongah Jang
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.5
    • /
    • pp.586-606
    • /
    • 2023
  • This study initiated research aligned with the body positivity movement, aiming to explore size diversity for groups facing relative size discrimination due to their deviation from average body types. Using KS adult women's apparel dimensions as a reference, jackets were developed for women in their 20s to 30s who belong to the small petite-size (S[P]) category, which is characterized by a height under 155cm (petite) and a bust-circumference from 72cm to less than 82cm (small). Using 3D virtual-fitting, we conducted experiment-pattern production and refinement and subsequent real-fitting evaluations by participants to objectively validate aesthetics and comfort. The study's findings are as follows: First, utilizing a 3D virtual-fitting program by identifying 'creases' and 'garment pressure points' in the jacket appearance, experiment patterns were refined and real jackets were produced. This approach addressed challenges in recruiting participants with specific body types and allowed for efficient research in terms of cost and time. Second, through real-fitting evaluations, basic-fit and slim-fit jackets labeled as <79-88-150> were developed for the S(P) size. we presented 'size spec' and 'ease allowance' for jackets by waist fit. Both fits received positive evaluations with approximately 53.5cm sleeve length, and 11.7cm shoulder length. The ease allowances for the basic-fit jacket were approximately 9.2cm at the bust circumference, 12.8cm at the waist circumference, and 6cm at the hip circumference. Similarly, the slim-fit jacket exhibited ease allowances of about 4.8cm at the bust circumference, 4cm at the waist circumference, and 4cm at the hip circumference, receiving positive evaluations for aesthetics and comfort.