• 제목/요약/키워드: real and reactive power sharing

검색결과 8건 처리시간 0.031초

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • 제3권2호
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어 (Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor)

  • 정교선;임경배;김동환;최재호
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.

An Equivalent Load Sharing by Wireless Parallel Operation Control in UPS

  • Byun, Young-Bok;Koo, Tae-Geun;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • Journal of KIEE
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2000
  • An equivalent load sharing control based on the frequency and voltage droop concept for parallel operation of two three-phase Uninterruptible Power Supply (UPS) systems with no control interconnection lines is presented in this paper. First of all, due to the use of active power and reactive power as control variables, the characteristics of output powers according to amplitude and phase differences between output voltages of two UPS systems are analyzed. Secondly, simulation results under different line impedance demonstrate the feasibility of the wireless parallel operation control. Finally, experiments are presented to verify the theoretical discussion with two three-phase 20kVA UPS systems employed TMS320C32, a kind of real time digital signal processor (DSP).

  • PDF

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

송전계통의 실시간 제어를 위한 위상변이기 (Phase-Shifter for Real-Time Control of Transmission System)

  • 한병문;장병건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.432-434
    • /
    • 1994
  • This paper describes a phase-shifter which can flexibly adjust the active and reactive power flow through an ac transmission line. The phase-shifter has two voltage-source converters sharing an energy storage capacitor. The magnitude of the injected voltage is controlled by the converter I connected in parallel with the sending terminal, while that of phase angle by the converter II in series with the line through the coupling transformer. In order to analyze the whole system operation, an equivalent circuit model was developed and verified by a computer simulation with EMTP code.

  • PDF