• Title/Summary/Keyword: reactor safety

Search Result 1,291, Processing Time 0.029 seconds

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

Design Improvement to a Research Reactor for Safety Enhancement using PSA (PSA를 이용한 연구용 원자로 안전성 향상 방안 도출)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.157-163
    • /
    • 2018
  • This paper describes design improvement to a research rector for safety enhancement using Probabilistic Safety Assessment (PSA). This PSA under reactor design was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA reported here is a Level 1 PSA, which addresses the risks associated with the core damage. The technical objectives of this study were to identify accident sequences leading to core damage and to derive design improvement from the dominant accident sequences through the sensitivity analysis. The AIMS-PSA and FTREX were used for the this PSA of the research reactor. The criterion for inclusion was all sequences with a point estimate frequency greater than a truncation value of 1.0E-14/yr. The final result indicates a point estimate of 6.79E-05/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events for the research reactor under design. Based on the dominant accident sequences from the PSA, the seven kinds of sensitivity analysis were performed and some design improvement items were derived. When the five methods to improve the safety were all applied to the reactor design and emergency operating procedure, its risk was reduced to about 1.21E-06/yr from 6.79E-05/yr. The contribution of LOCA and LOEP with high CDF were significantly reduced by the sensitivity analysis. The safety of the research reactor was well improved and the risk was reduced than before adapting the design improvement gotten from the sensitivity analysis. The present study indicated that the research reactor has the well-balanced safety in regard to each initiating event contribution to CDF. The PSA methodology is very effective to improve reactor safety in a conceptual design phase and especially, Risk-informed design(RID) is very nice way to find the deficiencies of research reactor under design and to improve the reactor safety by solving them.

A PRELIMINARY EVALUATION OF UNPROTECTED LOSS-OF-FLOW ACCIDENT FOR A PROTOTYPE FAST-BREEDER REACTOR

  • SUZUKI, TOHRU;TOBITA, YOSHIHARU;KAWADA, KENICHI;TAGAMI, HIROTAKA;SOGABE, JOJI;MATSUBA, KENICHI;ITO, KEI;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.240-252
    • /
    • 2015
  • In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of in-vessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.

Risk-Informed Optimization of Operation and Procedures for Korea Research Reactor (리스크정보 최적화를 통한 국내 연구용원자로의 안전성 향상)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • This paper describes an attempt to improve and optimize the operational safety level of a domestic research reactor by conducting a probabilistic safety assessment (PSA) under full-power operating conditions. The PSA was undertaken to assess the level of safety at an operating research reactor in Korea, to evaluate whether it is probabilistically safe and reliable to operate, and to obtain insights regarding the requisite procedural and design improvements for achieving safer operation. The technical objectives were to use the PSA to identify the accident sequences leading to core damage, and to conduct sensitivity analyses based thereon to derive insights regarding potential design and procedural improvements. Based on the dominant accident sequences identified by the PSA, eight types of sensitivity analysis were performed, and relevant insights for achieving safer operation were derived. When these insights were applied to the reactor design and operating procedure, the risk was found to be reduced by approximately ten times, and the safety was significantly improved. The results demonstrate that the PSA methodology is very effective for improving reactor safety in the full-power operating phase. In particular, it is a highly suitable approach for identifying the deficiencies of a reactor operating at full power, and for improving the reactor safety by overcoming those deficiencies.

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.

A Study on Severe Accident Management Capabilities and Strategies for CANDU Reactor (가압중수로형원전의 중대사고 대응능력 연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.160-165
    • /
    • 2014
  • The realistic cases causing severe core damage should be analyzed and arranged systematically for preparing an accident management of the specific nuclear power plant. The objective of this paper is to establish basic technical information for reactor safety and reactor building integrity management strategies in CANDU reactor severe accident. For the development of severe accident management strategies, plant specific features and behaviors must be studied by detailed analysis works. This analysis scope will serve to cover overall methods and analyzing results to understand the reactor building integrity status in the most likely severe accident sequences that could occur at CANDU reactor. Also analysis results could help prevent or mitigate severe accidents for the identification of any plant specific vulnerabilities to severe accidents using the probabilistic safety assessment (PSA) quantified results.

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Evaluation of Thermal Hazard in Neutralization Process of Pigment Plant by Multimax Reactor System (Multimax Reactor System을 이용한 안료제조시 중화공정의 열적위험성 평가)

  • Lee, Keun-Won;Han, In-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.91-99
    • /
    • 2008
  • The identification of thermal hazards associated with a process such as heats of reaction and understanding of thermodynamics before any large scale operations are undertaken. The evaluation of thermal behavior with operating conditions such as a reaction temperature, stirrer speed and reactants concentration in neutralization process of pigment plant are described. The experiments were performed by a sort of calorimetry with multimax reactor system The aim of the study was to evaluate the results of heat of reaction in terms of safety reliability to be practical applications. It suggested that we be proposed safe operating conditions and securities for accident prevention on reactor explosion through this study.