• 제목/요약/키워드: reactor capacity

검색결과 368건 처리시간 0.024초

차단기의 차단합성성대기적에 관한 연구 (A Study on the Adapting for Interrupting Capacity Augmentation of Circuit Breaker)

  • 황석영;조무제
    • 대한전기학회논문지
    • /
    • 제33권8호
    • /
    • pp.299-309
    • /
    • 1984
  • This paper proposes the adapter for interrupting capacity augmentation of circuit breaker which can be applied in case of shortage in a existing circuit breaker's interrupting capacity due to utility system extension. The adapter utilizes two winding type of reactor instead of single winding type of reactor and the control of 2ry circuit is excuted by a triac interlocked with the system protective relays actuation so as to cut out the reactor by short circuit of the 2ry winding in normal situation and to cut in the reactor by open circuit of the 2ry winding in abnomal situation such as short circuit accident. As a result of the theoritical analysis and experiment, it is proved that the adaptor can reduce the voltage crop and iron loss due to the reactor signigicantly in normal system condition and do a role of reactor upon the power system accident.

금속산화물을 이용한 유동층반응기에서 배연탈황특성 (The Characteristics of Desulfurization using Metal Oxides in a Fluidized Bed Reactor)

  • 박태성;홍성창
    • 공업화학
    • /
    • 제9권2호
    • /
    • pp.278-285
    • /
    • 1998
  • 배출가스중의 $SO_2$ 제거를 위하여 다양한 금속산화물로 구성된 천연망간광석, 철광석, $CuO/{\gamma}-A1_2O_3$ 등을 흡착제로 사용하여 고정층반응기에서 흡착용량실험을 하였다. 또한 흡착제중 흡착용량이 떨어지는 철광석을 제외한 두 가지 흡착제를 이용하여 유동층반응기에서 유속, 온도, 입자크기 등의 조업조건에 따른 $SO_2$ 흡착실험을 수행하였다. 모든 흡착제에서 온도가 증가할수록 흡착량이 증가하는 화학흡착반응을 보였고 유동층반응기에서 $U_o/U_{mf}$$U_o-U_{mf}$와 같은 유속조건에 따라 입자 크기에 따른 흡착량의 변화가 다르게 나타났으며 유동층반응기 성능식으로부터 반응속도상수를 얻었다. 이 실험을 통하여 천연망간광석이 유동층반응기에서 $SO_2$ 흡착제로의 사용가능성을 확인할 수 있었다.

  • PDF

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

Development of a Reclosing Scheme for Reduction of Turbine Generator Shaft Torsional Torques: A Decision Method to Achieve Optimal Reactor Capacity

  • Oh, Yun-Sik;Seo, Hun-Chul;Yang, Jeong-Jae;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1145-1153
    • /
    • 2014
  • It is well known that line switching operations like reclosing are able to cause transient power oscillations which can stress or damage turbine generators. This paper presents a reclosing scheme to reduce the shaft torsional torques of turbine generators by inserting an additional reactor. A novel method to determine optimal reactor capacity to minimize the torsional torque generated in a turbine generator is also proposed. In this paper, the turbine generator shaft is represented by a multi-mass model to measure torsional torques generated in the shaft between the turbine and the generator. Transmission systems based on actual data from Korea are modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. The simulation results clearly show the effectiveness of the proposed scheme and torsional torque can be minimized by applying the proposed scheme.

A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation

  • Eser, E.;Duyuran, B.;Bolukdemir, M.H.;Koc, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1208-1212
    • /
    • 2020
  • Knowledge on fuel enthalpy and its temperature derivative, the heat capacity, are important quantities in determination of fuel behavior in normal reactor operation and reactor transients. The aim of this study is to compare the heat capacity of oxide and nitrite fuels by using Einstein-Debye approximation. A simple analytical expression was performed to calculate the heat capacity of fuels. To test the validity and reliability, the calculated formulas were compared to published results for various nuclear fuels including UO2, ThO2, PuO2 and UN. Calculated formulas yielded results in consistent with literature.

일체형원자로에서 냉각재펌프의 전력측정을 이용한 실시간 유량산정 방법에 관한 연구 (The Study on a Real-time Flow-rate Calculation Method by the Measurement of Coolant Pump Power in an Integral Reactor)

  • 이준;윤주현;지성균
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of coolant pump power has been introduced in this study. Up to now, we did not found out a precedent which the coolant pump power is used for the real-time flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the real-time flow-rate calculation method by the measurement of coolant pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs, So, it has been concluded that it is possible to calculate the real-time flow-rate by the measurement of pump motor inputs. In addition, the compensation for a above new method can be made by HBM being now used in the commercial nuclear power plants.

  • PDF

Experimental Evaluation of the Thermal Integrity of a Large Capacity Pressurized Heavy Water Reactor Transport Cask

  • Bang, Kyoung-Sik;Yang, Yun-Young;Choi, Woo-Seok
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.357-364
    • /
    • 2022
  • The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62℃, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446℃ lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF

Bench-Flow Reactor System을 이용한 Lean NOx Trap 촉매의 특성 연구 (Study of Characterization for Lean NOx Trap Catalysts Utilizing a Bench-Flow Reactor System)

  • 윤천석;김학용
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.179-189
    • /
    • 2008
  • The performance of Lean NOx Trap (LNT) based on the catalysts of Pt/K/Ba/$\gamma-Al_2O_3$ with proprietary washcoat formulation is studied using a bench flow reactor system. To investigate the effect of temperature and gas hourly space velocity (GHSV) on the nitrogen oxides (NOx) trapping capacity as well as NOx breakthrough time and final ratio of $NO_2$ to NO of LNT, series of adsorption isotherms are carried out with simulated exhaust gases of the lean burn engines. Since typical operation of LNT requires periodic regeneration with a short rich excursion, where the stored or trapped NOx is released and subsequently reduced to $N_2$, the effect of the duration of lean and rich phase and type of reductants on the NOx conversion is investigated. NOx storage capacity and breakthrough time obtained from adsorption isotherms shows a volcano-type dependence on the temperature with a maximum NOx storage capacity occurring $350^{\circ}C$ and with a maximum breakthrough time occurring $400^{\circ}C$ at all GHSVs investigated in this study. Also, maximum ratio of $NO_2$ to NO is obtained at $400^{\circ}C$ with a GHSV of $75,000\;hr^{-1}$ Lean/rich cycle of 100 s lean and 5 s rich used with a concentration of 1.33% of $H_2$ and 4% of CO in the rich phase is found to be optimum at operating temperature of $350^{\circ}C$ and a GHSV of $50,000\;hr^{-1}$.

전압 불평형시 콘덴서 전압, 전류, 용량 특성 해석 (Characteristics Analysis for Voltage, Current & Capacity of Condenser at Voltage Unbalance)

  • 김종겸;박영진
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.145-151
    • /
    • 2010
  • 전압 불평형은 수용가 설비에서 상당히 중요한 전기 품질의 하나로 간주되고 있다. 전압은 송전선로 계통에서는 평형에 가깝지만, 수용가에서의 전압 레벨은 시스템 임피던스의 불평형과 단상 부하의 고르지 못한 배분 등으로 인해 불평형이 될 수 있다. 콘덴서는 역률 보상으로도 사용되며, 비선형 부하에서 발생하는 고조파를 저감하기 위해 리액터와 함께 사용되고 있다. 전압 불평형이 존재할 경우 전류 불평형으로 콘덴서에서는 용량변화가 일어난다. 콘덴서와 리액터를 함께 사용하는 경우 사고 발생이 높은 편이다. 그래서 콘덴서 설비에 전압 불평형이 존재할 경우 전압, 전류 그리고 용량의 변화가 어떻게 진행되는지 확인하는 것이 매우 중요하다. 본 연구에서는 전압 불평형률이 존재할 경우 콘덴서 단독운전과 리액터의 부착시 전압, 전류 및 용량의 크기가 규정에서 제시한 범위 이내인지를 계산하였다.