• 제목/요약/키워드: reactive minerals

검색결과 44건 처리시간 0.025초

콘크리트 장기 안정성을 위한 골재의 선택 (Selection of Suitable Aggregates for Long-term Stability of Concrete)

  • 양동윤;이동영
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

Effect of rock mineralogy on mortar expansion

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.233-241
    • /
    • 2020
  • Alkali-silica reaction (ASR) is among one of the most important damaging mechanisms in concrete, depending primarily on aggregates which contain reactive minerals. However, expansion in concrete may not directly relate to the reactive minerals. This study aims to investigate the influence of ASR and the expansion of mortar bars depending on aggregate type containing various components such as quartz, clay minerals (montmorillonite and kaolinite) and micas (muscovite and biotite). In this study, the accelerated mortar bar tests (AMBT) were performed in two conditions (mortar bars in the same and sole NaOH solutions). Petrographic thin section studies, X-ray diffraction (XRD) analysis (Rietveld method), scanning electron microscopy (SEM) and chemical analyses were carried out. This study showed that quartzite bars led to increase in expansion values of mortar bars in diabase-1 and andesite when these were in the same NaOH solution. However, three samples (basalt, quartzite and claystone) were found having ASR expansion based on the AMBT when the special molds were used for each sample. SEM study revealed that samples which exhibit highest expansions according to AMBT had a generally rough surface and acicular microstructures in or around the micro-cracks. Basalt and quartzite showed more variable in major oxides than those of other samples based on the chemical analyses, SEM studies and AMBT. This study revealed that the highest expansions were observed to source not only from reactive aggregates but also from alteration products (silicification, chloritization, sericitization and argillisation), phyllosilicates (muscovite, biotite and vermiculite) and clays (montmorillonite and kaolinite).

초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향 (Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier)

  • 정덕영;이봉한;정재현
    • 한국토양비료학회지
    • /
    • 제42권4호
    • /
    • pp.239-248
    • /
    • 2009
  • 본 실험은 지하수에 포함된 중금속을 제거하기 위한 투수성반응벽체를 개발하기 위하여 대공극 형성물질로 분쇄한 폐지와 식물섬유를 그리고 구조형성소재로 Na와 Ca-벤토나이트를 사용하여 소성 후 소성된 소재의 표면 구조와 공극발달 특성을 조사하였다. 그러나 소성은 중금속 제거율을 급격히 감소시키는 양이온교환용량에 영향을 미치므로 2:1 점토광물 중에서 양이온교환용량이 큰 점토광물과 일반 산업물질을 소재를 선정하였다. 연구 결과는 살펴보면 소성온도가 증가함에 따라 소성에 사용된 소재의 기존 CEC의 10 % 이하로 급격히 감소되는 경향을 보여주었다. 일축 압축 시험 결과 처리간 용적밀도는 큰 차이가 없었지만 Na와 Ca-벤토나이트를 소성소재 모두 폐지가 5 % 정도 처리하였을 때 압축강도가 가장 높은 것으로 나타났다. 그리고 소성온도와 기간 모두 공극 형성에 영향을 미친 것으로 조사되었다. 이러한 연구 결과로부터 다공체 내에 형성된 공극은 수분 투수 특성과 중금속 제거에 모두 영향을 미칠 것이라 추정하였다.

폐콘크리트 미분말을 활용한 이산화탄소 반응경화 시멘트 제조 (Manufacture of CO2 Reactive Hardening Cement Using Waste Concrete Powder)

  • 이향선;송훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.75-76
    • /
    • 2023
  • In the cement industry, various research initiatives are underway to achieve carbon neutrality. Mineral carbonation is a technology that converts carbon dioxide into minerals for storage, and CO2 reactive hardening cement is a type of cement that incorporates mineral carbonation technology. In this study, we aimed to manufacture CO2 reactive hardening cement for reducing carbon emissions in the cement industry by utilizing waste concrete powder generated in the construction sector.

  • PDF

DC Reactive Magnetron Sputtering법에 의한 Ti-Al-V-N 박막의 성장거동 (Growth behavior of Ti-Al-V-N Films Prepared by Dc Reactive Magnetron Sputtering)

  • 손용운;정인화;이영기
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.688-694
    • /
    • 1999
  • Ti-6Al-4V 합금을 타겟트로 사용하여 유리 기판위에 dc reactive magnetron sputtering법으로 $N_2$/(Ar+N_2)$ 비, 기전력 및 시간등의 여러 가지 증착 조건에서 Ti-6Al-4V-N 필름을 증착하였고, 각각의 증착 조건에 따른 결정구조 및 우선방위 거동은 X-선 회절장치를 사용하여 조사하였다. Ti-6Al-4V-N 필름은 본질적으로 fcc 결정구조의 $\delta$-TiN에 Al과 V이 결함으로서 고용된 변형된 형태의 $\delta$-TiN구조이고, TiN의 격자상수(4.240 )보다 작은 값을 나타내었는데, 이는 Ti(1.47 )에 비하여 상대적으로 원자반경이 작은 Al(1.43 )과 V (1.32 )이 Ti의 격자위치에 치환된 결과이다. 그리고 Ti-6Al-4V-N 필름은 $_N2$가스 분압이 감소됨에 따라 (111) 우선방위 성장거동을 하였을 뿐만아니라 증착시간의 증가에 따라 뚜렷한 (111) 우선방위 성장거동을 나타내었다. 그리고 증착속도 및 결정입도의 거동 또한 여러 가지 증착 조건에 크게 의존한다

  • PDF

직류 및 고주파 마그네트론 스퍼터링법으로 증착한 Ti-Al-V-N 박막의 특성 (Characterizations of Ti-Al-V-N Films Deposited by DC and RF Reactive Magnetron Sputtering)

  • 손용운;정인화;이영기
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.398-404
    • /
    • 2000
  • The Ti-Al-V-N films have been deposited on various substrates by d.c and r.f reactive magnetron sputtering from a Ti-6Al-4V alloy target in mixed $Ar-N_2$ discharges. The films were investigated by means of XRD, AES, SEM/EDX, microhardness, TG and scratch test. The XRD and SEM results indicated that the films were of single B1 NaCl phase having dense columnar structure with the (111) preferred orientation. The composition of Ti-Al-V-N film was the Ti-7.1Al-4.3V-N(wt%) films. Adhesion and microhardness of Ti-Al-V-N films deposited by r.f magnetron sputtering method were better than those deposited by d.c magnetron sputtering method. The anti-oxidation properties of Ti-Al-V-N films were also superior to that of Ti-N film deposited by the same deposition conditions.

  • PDF

편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링 (Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System)

  • 정찬호;김천수;김통권;김수진
    • 한국광물학회지
    • /
    • 제10권1호
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

영천 화강암지역 지하수의 지화학적 모델링 (Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • 대한지하수환경학회지
    • /
    • 제5권4호
    • /
    • pp.192-202
    • /
    • 1998
  • 영천 도수터널 내 화강암 지역의 단열대를 따라 유출되는 지하수에 대하여 지화학 및 환경동위원소 연구를 수행하였다. Ca-HCO$_3$유형에 속하는 유출수의 화학 조성은 화강암을 구성하는 규산염 광물 및 열극 충진 방해석의 지화학적 용해 반응에 의해 설명되며, 그 수문지화학적 진화는 부분적 개방계에서 진행되었음을 보여준다. 환경동위원소 연구 결과, 유출수는 모두 강수 기원으로서 적어도 1953년 이전에 함양된(즉 체류 시간이 최소 45년 이상인) 지하수임을 지시해주며, 나아가 지표로부터의 거리와 단열대의 발달 상태에 따라 부분적으로 지표수의 혼입이 진행되고 있음을 지시한다. 지화학 반응 경로 모델인 CHILLER를 이용하여 본 지역 화강암 지하수의 수문지화학적 진화를 모델링 하였다. 그 결과, $Ca^{2+}$, $Na^{+}$, HCO$_3$$^{-}$ 및 pH는 규산염 광물 및 방해석의 용해 작용과 더불어 점차 증가되는 반면, $Mg^{2+}$$K^{+}$는 각각 몬트모릴로나이트와 백운모의 2차 생성과 더불어 감소됨을 보여준다. 2차 광물의 생성 순서는 적철석, 깁사이트, 카올리나이트, 몬트모릴로나이트, 백운모, 장석의 순이다. 모델링 결과는 유출수의 물리화학적 분석값과 2차 광물의 동정 결과와도 잘 일치한다. 따라서, 이러한 물-암석 상호 반응 모델링을 비교적 복잡한 암반 지하수의 수문지화학적 진화 해석에 타당성 있게 적용할 수 있음을 보여준다.

  • PDF

비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링 (Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine)

  • 박맹언;성규열;고용전
    • 자원환경지질
    • /
    • 제33권5호
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF

반응성 마그네트론 스퍼터링법으로 제조한 Ti-Al-V-N 박막의 미세조직 및 부착특성에 관한 연구 (The microstructure and adhesive characteristics of Ti-Al-V-N films prepared by reactive magnetron sputtering)

  • 손용운;이영기
    • 열처리공학회지
    • /
    • 제12권3호
    • /
    • pp.199-205
    • /
    • 1999
  • The quaternary Ti-Al-V-N films have been grown on glass substrates by reactive dc and rf magnetron sputter deposition from a Ti-6Al-4V target in mixed Ar-$N_2$ discharges. The Ti-Al-V-N films were investigated by means of X-ray diffraction(XRD), electron probe microanalysis(EPMA) and scratch tester. Both XRD and EPMA results indicated that the Ti-Al-V-N films were of single B1 NaCl phase having columnar structure with the (111) preferred orientation. Scratch tester results showed that the adhesion strength of Ti-Al-V-N films which treated with substrate heating and vacuum annealing was superior to that of as-deposited film. The good adhesion strength was also achieved in the double-layer structure of Ti-Al-V-N/Ti-Al-V/Glass.

  • PDF