• Title/Summary/Keyword: reactive epoxy

Search Result 44, Processing Time 0.02 seconds

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.

Application of UV Curable Coating for the Surface Protection of Polymeric Materials: PVC and Polystyrene (고분자 물질의 표면 보호를 위한 자외선 경화 도료의 응용)

  • Moon, Myung-Jun;Park, Jin-Hwan;Lee, Gun-Dae;Suh, Cha-Soo;Kim, Jong-Rae
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.175-184
    • /
    • 1991
  • Ultraviolet curable coatings are often used to protect the surface of polymer materials exposed to the ultraviolet radiation. However, the adhesion of epoxy acrylate on poly(vinyl chloride) and the UV curable coating on polystyren are poor. The objective of this work was to improve the adhesion of coating according to various formulations of the reactive diluents and finishing methods using the photografting of multifunctional acrylate and the surface activation on polymer surface impregnated a phtoinitiator. The addition of Tripropylene glycole diacrlate in the formulation of coating results in the improvement of adhesion of coating due to the flexibility. But the increase of the crosslinking density which results from the oxidation of surface during the exposure of UV radiation caused the loss of adhesion of coating exept the photografting method. In the trimethylolpropane triacrylate the improvement of adhesion are considerable due to the chemical bond between multifundtional acrylate and surface. From this work we expect to achieve the varity and functionality in the formulation of coating according to the photografting and surface activating of polymer.

  • PDF

Benzo(a)pyrene-Triglyceride Adduct: a Potential Molecular Biomarker for Carcinogen Exposure

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05b
    • /
    • pp.20-45
    • /
    • 2002
  • In this study, we demonstrated the in vitro and in vivo formation of carcinogen-lipid adduct and its correlation with DNA or protein adducts. The lipids from serum or hepatocyte membranes of Spragu-Dawley rats. human serum, and standard major lipids were in vitro reacted with benzo[a]pyrene(BP) and BP metabolites. 7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]-pyrene(BPDE-I), an ultimate carcinogenic form of BP, was covalently bound to triglyceride(TG). BPDE-I-TG adducts isolated by thin-layer chromatography (TLC) were further detected by high performance liquid chromatography(HPLC). TGs, including triolein, tripalmitin and tristearin, showed positive reactions with BPDE-I. However, cholesterol, phospholipids(Phosphatidylcholine, phosphatidyl-ethanolamine, phosphatidyl-inositol and sphingomyelin) and nonesterified fatty acids(palmitic acid, oleic acid, linoleic acid and stearic acid) did not react with BPDE-I. In addition, other BP metabolites (BP-phenols and -diols) did not react with TG, which TG appeared to be the most reactive lipid yet studied with respect to its ability to form an adduct with BPDE-I. There was a clear-cut dose-respect to its ability to form an adduct with BPDE-I-lipid adduct in vitro between TG and [1,3-3H]BPDE-I. In an animal study, BPDE-I-TG was also formed in the serum of rats orally treated with BP(25 mg/rat). Also, obvious correlations between [3H]BP related-biomolecule adducts (DNA, protein) or lipid damage and the BPDE-I-TG adduct were obtained in various tissues of mice i.p. treated with [3H]BP. These data suggest that TG can form an adduct with BPDE-I, as do other macromolecules (DNA, RNA, and protein). Therefore, a carcinogen-lipid adduct would be a useful biomarker for chemical carcinogenesis research and cancer risk assessment.

  • PDF

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF