• Title/Summary/Keyword: reactive compatibilization

Search Result 13, Processing Time 0.032 seconds

Reactive Compatibilization of Amorphous Poly-${\alpha}$-olefins/Amorphous Polyamide Blends (무정형 알파-올레핀 고분자/무정형 폴리아미드 블렌드의 반응 상용화)

  • Yun, Deok-Woo;Choi, Mi-Ju;Hwang, Kyu-Hee;Kim, Geon-Seok;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.490-495
    • /
    • 2009
  • The reactive compatibilization of amorphous poly-${\alpha}$-olefins (APAO)/amorphous polyamide (aPA) blends was carried out using two kinds of reactive compatibilizers such as maleated polypropylene and ethylene-glycidyl methacrylate-methyl acrylate copolymer. The grafting reaction rates between aPA and the compatibilizers were examined using FT-IR, SEM and rheometer. The effect of the reactive compatibilization on the mechanical property of the blends was investigated with a universal testing machine. The adhesion strength of the blends including a hydrocarbon tackifier resin, C9 was also measured.

Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blends

  • Kim Young Fil;Choi Chang Nam;Kim Young Dae;Lee Ki Young;Lee Moo Sung
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.270-274
    • /
    • 2004
  • Blends of poly(l-lactide) (PLA) and low density polyethylene (LDPE) were prepared by melt mixing in order to improve the brittleness of PLA. A reactive compatibilizer with glycidyl methacrylate (GMA), PE-GMA, was required as a compatibilizer due to the immiscibility between PLA and LDPE. It contributes to reduce the domain size of dispersed phase and enhance the tensile properties of PLA/LDPE blends, especially for PLA matrix blends. A reaction product between PLA and PE-GMA, which was formed during melt-mixing and considered to act as a reactive compatibilizer, was characterized using $ ^1H-NMR$ spectroscopy.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

Systematic studies on the properties of poly(lactic acid) (PLA)/liquid polybutadiene rubber (LPB) reactive blends

  • Lim, Sung-Wook;Choi, Myeon-Cheon;Jeong, Jae-Hoon;Park, Eun-Young;Ha, Chang-Sik
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.149-162
    • /
    • 2018
  • Following our previous work, we have conducted further systematic studies to investigate the effects of reactive blending on the thermal and mechanical properties of blends of poly(lactic acid) (PLA) and a liquid rubber, polybutadiene (LPB). The toughened PLAs were prepared by melt-blending the PLA with various contents (0-9 wt.%) of the LPB in the absence or presence of dicumyl peroxide (DCP), a radical initiator. It was found that the rubber domains were homogeneously dispersed at the nanoscale in the PLA matrix up to 9 wt.% of LPB thanks to the reactive blending in the presence of DCP. Owing to the compatibilization of PLA with LPB through reactive blending, the elongation and toughness of PLA was enhanced, while the hydrolytic degradation of PLA was reduced.

A Study on the Compatibilization of Blends Based on Poly(phenylene ether) and Polyamide (Poly(phenylene ether)/Polyamide 블렌드의 상용화에 관한 연구)

  • 김형수;임종철
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.441-449
    • /
    • 2001
  • Compatibilization of blends based on poly(phenylene ether) (PPE) and polyamide (PA) has been practiced with the incorporation of a copolymer formed by grafting polystyrene onto polybutadiene latex (g-BS) which is further functionalized with maleic anhydride (MAH) (g-BS*) to impart reactivity with amine groups of PA. The major focus has been placed on the effect of the various structural factors in g-BS8 on the phase morphology and mechanical performance of the blends. For the balance of impact strength and heat resistance, it was important to locate g-BS n particles inside of the PPE phase, which was accomplished by the proper control of the molecular weight and amount of PS in g-BS*. For g-BS*'s having constant molecular weight and amount of PS, the reduction of MAH content or increase of rubber particle size in g-BS* resulted in the increase of domain size and consequently loss in mechanical properties. Based on the comparison made with the conventional PPE/PA blend comprising MAH grafted PPE as a compatibilizer, it was confirmed that the comparable level of mechanical performance can be achieved by an appropriate g-BS* type material with improved whiteness index.

  • PDF

Dynamic and Mechanical Properties of PPS/ABS Blends (PPS/ABS 블렌드의 동력학적/기계적 특성)

  • 이영관;김준명;이미영;남재도;박연흠;박찬석
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2002
  • In this study, the PPS/ABS blend system was investigated in order to identify the relationship between the incorporation of compatabilizing moieties and the mechanical properties. ABS resin was chemically modified by the incorporation of maleic anhydride using reactive extrusion method to yield MABS resin, and PPS/MABS blend was prepared by a twin screw extruder. Single glass transition behavior was observed in the various compositions of PPS/MABS blend by dynamic mechanical analysis study. Upon the examination of the mechanical properties, the PPS/MABS blend exhibited an enhanced tensile, flexural and impact strength, which might be due to the better chemical compatibilization to result in the reduced interfacial tension between each components.

Reactive compatibilization of liquid crystalline polymer/ethylene-acrylic acid ionomer blends (액정 고분자/에틸렌-아크릴산 이오노머 블렌드의 반응상용화에 관한 연구)

  • Cruz, Heidy;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3653-3659
    • /
    • 2015
  • This paper describes the reactive compatibilization of blends of a wholly aromatic thermotropic copolyester liquid crystalline polymer (TLCP) with random copolymers of ethylene and acrylic acid (EAA) and their salts. Blends were prepared by melt mixing in an intensive batch mixer, and the formation of a graft copolymer due to acidolysis between the TLCP and the acrylic acid group of the ionomer was evaluated. Chemical reaction was assessed by torque measurement during melt mixing and by thermal analysis and morphological observation. The Na-salt of the EAA ionomers was especially effective at promoting a grafting reaction. The extent of reaction depended not only on the cation, but also composition of the ionomer and reaction time. The product of the grafting reaction between the TLCP and a sodium-neutralized ionomer proved to be an effective compatibilizer for TLCP and EAA ionomers.