• Title/Summary/Keyword: reaction-formation

Search Result 3,305, Processing Time 0.031 seconds

Nucleophilic Substitution Reaction of Dansyl Chloride with Substituted Anilines$^1$

  • Han, Sung-Bin;Sung, Dae-Dong;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.162-164
    • /
    • 1985
  • Nucleophilic substitution reaction of dansyl chloride with anilines in various solvents have been investigated. The Bronsted ${\beta}$ and Hammett ${\rho}_N$ values indicated that the bond formation is advanced more than the bond breaking at the transition state. Solvatochromic correlations also predicted the importance of bond formation at the TS, showing a greater contribution of polarity (${\pi}^{\ast}$) compared to hydrogen bond donor acidity (${\alpha}$). The effect of solvent on rate was found to violate the reactivity-selectivity principle.

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

The Reaction of Superoxide with Carbohydrate Sulphonates

  • Shin, Young-Sook;Nam Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.188-191
    • /
    • 1993
  • The reaction between methyl 2,3-di-O-benzyl-4,6-di-O-mesyl-${\alpha}$-D-glucopyranoside (1b) and potassium superoxide resulted in hydrolysis, and gave methyl 2,3-di-O-benzyl-${\alpha}$-D-glucopyranoside (1) as a sole product. When the reaction was performed with a vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-altropyranoside (4b), again the hydrolysis product, methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4) was obtained. However, the reaction of potassium superoxide with another vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-glucopyranoside (3b), nucleophilic displacement took place to afford methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4). Apparently different results from two trans vicinal dimesylates, 3b and 4b are explained by the transient formation of epoxides, methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-allopyranoside (8) and methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-mannopyranoside (9) by $KO_2$. The reaction between the allo epoxide 8 and $KO_2$ gave altro 4. The manno epoxide 9 also afforded altro 4 as the major product. Facile epoxide formation by the reaction of a vicinal dimesylate and superoxide was also observed with 3-O-benzyl-1,2-O-isopropylidene-5,6-di-O-mesyl-${\alpha}$-D-glucofuranose: 5,6-anhydro-3-O-benzyl-1,2-O-isopropylidene-${\beta}$-L-idofuranose was obtained.

Formation Mechanism of Chlorate ($ClO_3\;^-$) by Electrochemical Process (전기화학적 공정에 의한 클로레이트의 생성메커니즘)

  • Baek, Ko-Woon;Jung, Yeon-Jung;Kang, Joon-Wun;Oh, Byung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.627-634
    • /
    • 2009
  • This study was done to find out the formation mechanism of chlorate by electrochemical process using chloride ion ($Cl^-$) as an electrolyte. Firstly, the effective factors such as pH and initial chloride concentration were figured out to see the formation property of chlorate during electrolysis. And the relation of free chlorine, and mixed oxidants such as OH radical and ozone with chlorate were estimated to concretize the formation mechanism. As a result, it was found that the major reaction of chlorate formation would be electrochemical reaction with free chlorine, and also the direct oxidation of chloride ion and the reaction by OH radical were participated in the formation of chlorate. Moreover, it was observed that formed chlorate was oxidized to perchlorate. Lastly, the optimum condition was recommended by comparing free chlorine with chlorate concentration during the electrochemical process with the different electrode separation.

A Study on the Production of VFAs from Sewage Sludge by Fenton's Oxidation (펜톤 산화에 의한 하수 슬러지로부터 유기산 생성에 관한 연구)

  • Han, Kum-Seok;Nam, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.184-190
    • /
    • 2005
  • A new VFAs production process from sewage sludge using Fenton's oxidation was investigated. Optimum concentrations of $H_2O_\;and\;Fe^{2+}$ as well as optimum reaction temperature for VFAs production were studied. In the presence of $Fe^{2+}$ as catalyst, the VFAs formation rate increased about 4 times compared to $H_2O_2$ oxidation process without $Fe^{2+}$. Optimum concentrations of $H_2O_2$ and $Fe^{2+}$ were 0.62 M and 0.007 M, respectively. VFAs formation reaction proceeded rapidly within 1 min and VFAs formed degraded partly to acetic acid and $CO_2$, which exhibited series reaction characteristics. Based on the economic aspect, reaction temperature of $25^{\circ}C$ and 10 min of reaction time were thought to be proper reaction conditions. The effect of initial pH in the range of $3{\sim}6.3$ on the VFAs formation was not observed.

A Comparison between the Decomposition of Bisphenol A and the Concentration of Hydrogen Peroxide Formed during Ozone/Catalyst Oxidation Process (오존/촉매 산화공정에서 비스페놀 A의 분해와 생성된 과산화수소의 농도 비교)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.619-625
    • /
    • 2017
  • In this study, the formation of hydroxyl radical and decomposition characteristics of bisphenol A (BPA) was investigated by quantifying hydrogen peroxide formed as a reaction by-product during the formation stage of hydroperoxyl radical. The direct oxidation reaction by ozone only decomposed BPA just like the Criegee mechanism under the condition where radical chain reactions did not occur. Non-selective oxidation reactions occurred under the conditions of pH 6.5 and 9.5 where radical chain reactions do occur, confirming indirectly the formation of hydroxyl radical. The decomposition efficiency of BPA by the added catalysts appeared in the order of $O_3$/PAC ${\geq}$ $O_3/H_2O_2$ > $O_3$/high pH > $O_3$ alone. 0.03~0.08 mM of hydrogen peroxide were continuously measured during the oxidation reactions of ozone/catalyst processes. In the case of $O_3$/high pH process, BPA was completely decomposed in 50 min of the oxidation reaction, but reaction intermediates formed by oxidation reaction were not oxidized sufficiently with 29% of the removal ratio for total organic carbon (TOC, selective oxidation reaction). In the case of $O_3/H_2O_2$ and $O_3$/PAC processes, BPA was completely decomposed in 40 min of the oxidation reaction, and reaction intermediates formed by the oxidation reaction were oxidized with 57% and 66% of removal ratios for TOC, respectively (non-selective oxidation reactions).

Interface chemistry of SiC/Co reaction (SiC/Co 반응의 계면화학)

  • ;Hubertus Nickel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.109-121
    • /
    • 1995
  • Reaction coulples of SiC with cobalt were annealed in an Ar/4 vol% $H_2$ atmosphere at temperatures between $950^{\circ}C$ and $1250^{\circ}C$for various times between 4 and 100 h. At temperatures above $950^{\circ}C$, solid state reactions lead to the formation of various silicides with carbon precipitates. The typical reaction layer sequence was $SiC/CoSi + C/CozSi + C/CozSi/CozSi + C/{\cdot\cdot\}/CO_2Si/CO$ in the reaction zone. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was examined and discussed in terms of reaction kinetics and thermodynamic considerations. The growth of the reaction zone has a square root of time dependence. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic gowth of the reaction zone. The mechanical properties of the reaction zones were determined by the microhardness test.

  • PDF