• Title/Summary/Keyword: reaction surface method

Search Result 1,044, Processing Time 0.03 seconds

A study on the fabrication of poly crystalline Si wafer by vacuum casting method and the measurement of the efficiency of solar cell

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • Si-wafers for solar cells were cast in a size of $50{\times}46{\times}0.5{\textrm}{mm}^3$ by vacuum casting method. The graphite mold coated by BN powder, which was to prevent the reaction of carbon with the molten silicon, was used. Without coating, the wetting and reaction of Si melt to graphite mold was very severe. In the case of BN coating, SiC was formed in the shape of tiny islands at the surface of Si wafer by the reaction between Si-melt and carbon of the graphite mold on the high temperature. The grain size was about 1 mm. The efficiency of Si solar cell was lower than that of Si solar cell fabricated on commercial single and poly crystalline Si wafer. The reason of low efficiency was discussed.

Direct Coloration using Self-assembly Fabrication Method on PET Fibers - Surface diazo coupling reaction -

  • Kim, Byung-Soon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.5
    • /
    • pp.37-40
    • /
    • 2007
  • The electrostatic layer-by-layer technique provides a convenient way to control the construction of ultrathin films at nano-scale ranges and can be easily obtained. It can be also applicable to fiber substrate with dye compounds. We have fabricated multilayer dye films using diazonium resin and three couplers, which are prepared by self-assembly approach. This method is based on layer-by-layer deposition using electrostatic attraction between oppositely charged ions. Beside, the diazo coupling reaction proceeded to form azo dye layer on the PET fibers the same time. The corresponding results of the multilayer films have been discussed on the level of color strength (K/S).

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim;Sangmoon Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Potential Energy Surfaces for the Reaction Al + O2→ AlO + O

  • Ledentu, Vincent;Rahmouni, Ali;Jeung, Gwang-Hi;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1645-1647
    • /
    • 2004
  • Potential energy surfaces for the reaction Al + $O_2{\to}$AlO + O have been calculated with the multireference configuration interaction (MRCI) method using molecular orbitals derived from the complete active space selfconsistent field (CASSCF) calculations. The end-on geometry is the most favourable for the reaction to take place. The small reaction barrier in the present calculation (0.11 eV) is probably an artefact related to the ionicneutral avoided crossing. The charge analysis implies that the title oxidation reaction occurs through a harpooning mechanism. Along the potential energy surface of the reaction, there are two stable intermediates of $AlO_2(C_{{\infty}v}$ and $C_{2v}$) at least 2.74 eV below the energy of reactants. The calculated enthalpy of the reaction (-0.07 eV) is in excellent agreement with the experimental value (-0.155 eV) in part due to the fortuitous cancellation of errors in AlO and $O_2$ calculations.

Micro Groove Machining for Electrochemical Micro-Machining (전기화학 가공을 이용한 마이크로 홈 가공)

  • 김영민;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1844-1847
    • /
    • 2003
  • Electrochemical micro-machining(EMM) is used to achieve a desired workpiece surface by dissolving the metal workpiece with an electrochemical reaction. This machining method can be applied to metal that is difficult to machining using other methods. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and current is applied. This aim of this work is to develop electrochemical micro-machining(EMM) technique for micro groove shape by establishing appropriate electrochemical parameters of machining

  • PDF

NUMERICAL STUDY OF STREAM REFORMING IN PRECONVERTER FOR MCFC (MCFC용 프리컨버터 수증기 개질반응의 수치연구)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.228-232
    • /
    • 2010
  • In this paper, various operating parameters of stream reforming process from methane in preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature, Gas Hourly Space Velocity(GHSV), and different reactor shapes.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Simple and Rapid Identification of Low Level Hepatitis B Virus DNA by the Nested Polymerase Chain Reaction

  • Jang, Jeong-Su;Lee, Kong-Joo
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.469-474
    • /
    • 1996
  • A rapid and sensitive method has been developed to detect hepatitis B virus DNA (HBV) by nested polymerase chain reaction (PCR) technique with primers specific for the surface and core regions in capillary thermal cycler within 80 min. The lower limit for detection by present PCR method is $10^{-5}$ pg of recombinant HBV DNA which is equivalent to that determined by one round of PCR amplification and Southern blot hybridization analysis. When boiled HBV positive serum was serially diluted 10-fold, HBV DNA was successfully determined in $1{\mu}l-10^{-3}$ of serum. HBV DNA was detected by present method in 69 clinical samples including HBsAg positives and negatives by enzyme-linked immunosorbent assay (ELISA). When serum samples were amplified by nested PCR using surface and core region primers, HBV DNAs were detected in 37 of 69 samples (53.6%) and 18 of 69 samples (26.1%), respectively. These results can inform the infectious state of HBsAg positive pateints. A simple and rapid nested PCR protocol by using boiled serum as DNA template has been described for the clinical utility to determine HBV DNA in human serum.

  • PDF