• 제목/요약/키워드: reaction rate method

검색결과 1,176건 처리시간 0.031초

석탄과 제지슬러지 혼소에 따른 연소특성에 관한 연구 (Characterization on Co-Combustion of Coal and Paper Mill Sludge)

  • 이갑두;류태욱;박상원
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.331-339
    • /
    • 2013
  • Efforts were made to determine the activation energy and the reaction order by adopting Kissinger and Flynn-Wall-Ozawa analysis methods. All the data were acquired from TGA thermograms for the mixed fuels with different temperature heating rates. It could be known that both the coal and the mixed fuels decomposed thermally at temperature ranges of $300{\sim}700^{\circ}C$. The temperature at the maximum reaction rate, Tp, could be determined by DTG method, which could be obtained by differentiation of TGA thermogram. Kissinger analysis showed the linear relationship with experimental data, showing the activation energy of $319.64{\pm}4$ kJ/mol. From Flynn-Wall-Ozawa analysis, it was shown that the activation energies and the reaction orders did not undergo any significant changes with both the conversions and the heating rates. It was considered from this facts that the combustion mechanism of the mixed fuels could not be affected by the extent of conversion and heating rate. In the present study, the activation energies showed different values according to the different analysis methods. The difference might be originated from the inconsistency of the mathematical data treatment method. In other words, while the activation energies obtained from the Kissinger method indicated the average values for overall reaction, that from Flynn-Wall-Ozawa method showed the average values for the each conversion around Tp.

헤드스페이스-SPME 방법을 이용한 트리메틸아민의 분석방법 연구 (The Analysis of Airborne Trimethylamine Using a Headspace (HS)-SPME Method)

  • 안지원;김기현
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.357-366
    • /
    • 2008
  • In this study, the analytical performance of trimethylamine (TMA) were investigated with respect to headspace-solid phase microextraction (HS-SPME) method. In order to induce the elution of aqueous TMA to headspace, NaOH was added as a decomposition reagent to aqueous TMA standard. By controlling the combination of three major variables for TMA extraction, the extent of extraction was compared between the two contrasting conditions for each variable (i.e., reaction time (long (L) vs short (S)), exposure temperature (30 vs $50^{\circ}C$), and exposure time (10 vs 30 min)). The results of this comparative analysis showed that the extraction efficiency for all eight types of HS-SPME combinations decreased on the order: L-30-30>L-50-10>L-30-10>L-50-30>S-30-30>S-50-30>S-50-10>S-30-10. The effect of reaction time appeared to exert significant influences on the relative recovery rate of HS-SPME at 90% confidence level. However, the effects of exposure temperature or exposure time were not so significant as reaction time. When the recovery rate of HS-SPME is compared against the direct injection of liquid standard into GC injector, it recorded as 2%. According to this comparative study, the reaction conditions for HS-SPME application can exert significant influences on the analysis of TMA.

플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구 (Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher)

  • 황영규;허중식
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

생물난분해성 유기물질 함유 폐수처리를 위한 Fenton 산화법의 효율적 적용방안에 관한 연구 (A Study on the Efficient Applicability of Fenton Oxidation for the Wastewater Containing Non-biodegradable Organics)

  • 전세진;김미정
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.76-83
    • /
    • 2000
  • This research is about wastewater containing non-biodegradable TDI(Toluene Diisocyanate) that is treated by the activated carbon adsorption method. In the case of the Fenton oxidation process being applied to the existing process, optimal pH, reaction time, chemical dosing amount, removal rate, and cost were investigated. A pilot plant test was applied after finding optimal conditions with lab experiments. The optimal conditions were pH 3~5(COD removal rate 84~88%) and reaction time 30min~1hr. In higher $H_2O_2$ dosing amount, COD removal rate was a little higher. But there was little difference in the removal rate according to $FeSO_4{\cdot}7H_2O$ dosing amount. Treatment cost was economical in the case of the Fenton oxidation process being operated earlier than activated carbon adsorption system. But chemical dosing point, chemical mixing effect, chemical dosing amount, removal rate, and the cost of facility and others must be considered in practical process.

  • PDF

PEMFC 고분자막 내구 평가를 위한 Fenton 반응에서 과산화수소 농도 변화에 관한 연구 (Variation of Hydrogen Peroxide Concentration during Fenton Reaction for Test the Membrane Durability of PEMFC)

  • 오소형;김정재;이대웅;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.315-319
    • /
    • 2018
  • 고분자전해질연료전지(PEMFC)의 고분자막 전기화학적 내구성을 셀 밖에서 평가하는 방법으로 펜톤(Fenton)반응이 많이 이용된다. 본 연구에서는 펜톤 반응에 영향을 주는 인자를 파악하고자 하였다. 반응진행도를 파악하기 위해 펜톤 반응에서는 생성물로서 라디칼을 분석해야 하는데, 라디칼을 분석하기 어려워 반응물인 과산화수소 농도를 분석해 반응진행도를 측정하였다. 온도에 따른 과산화수소 변화속도를 측정해 활성화 에너지를 계산한 결과 180분에서 24.9 kJ/mol 이었다. 펜톤반응 속도는 철이온 농도에 많은 영향을 받았다. $80^{\circ}C$, 200 rpm, $Fe^{2+}$ 80 ppm 조건에서는 1시간동안에도 과산화수소 농도가 20%이상 처음과 차이가 나므로 용액교체를 자주 하는 것이 막열화 속도를 증가시킴을 보였다.

기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사 (Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction)

  • 유용호;어경훈;송은석;이성철;소명기
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.563-569
    • /
    • 1999
  • 수평형 반응로에서 $TMS[Si(CH_3)_4]-H_2$ 와 H$_2$가스를 이용하여 SiC 초미분말 합성시 최적 공정 조건을 알아보기 위하여 수치모사방법을 이용하였다. 이론적인 해석 결과, 반응온도가 증가함에 따라 TMS의 전환률은 증가하였지만, 수소유량이 증가함에 따라서는 TMS 전환률이 감소하였다. 또한 반응온도가 높을수록 기상의 충돌확률이 증가하여 최종 생성된 SiC 입자농도는 감소하였지만, 수소유량과 TMS 농도가 증가하는 경우에서는 생성된 입자농도가 증가하였다. 한편 입자크기는 반응온도와 초기 TMS 농도가 증가함에 따라 증가하였지만 수소유량이 증가하는 결향을 나타내었다. 이러한 반응온도, 수소유량 및 TMS 농도에 따른 입자크기 변화는 실제 실한 결과와 이론적으로 고찰한 결과가 일치하였다.

  • PDF

Reaction between CH₃and H₂at Conbustion Temperatures

  • 백현주;신관수;Yang, H.;V. Lissianski;W. C. Gardiner, Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.543-546
    • /
    • 1995
  • The reaction between CH3 radicals and H2 was investigated behind incident shock waves at temperatures between 1308 and 1825 K by following the consumption of CH3 using a time resolved UV absorption method at 213.9 nm. The rate coefficient expression 1.10 X 1013 exp(-7370 K/T) cm3mol-1s-1 for the reaction of CH3 with H2 was derived.

Practical methods for GPU-based whole-core Monte Carlo depletion calculation

  • Kyung Min Kim;Namjae Choi;Han Gyu Lee;Han Gyu Joo
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2516-2533
    • /
    • 2023
  • Several practical methods for accelerating the depletion calculation in a GPU-based Monte Carlo (MC) code PRAGMA are presented including the multilevel spectral collapse method and the vectorized Chebyshev rational approximation method (CRAM). Since the generation of microscopic reaction rates for each nuclide needed for the construction of the depletion matrix of the Bateman equation requires either enormous memory access or tremendous physical memory, both of which are quite burdensome on GPUs, a new method called multilevel spectral collapse is proposed which combines two types of spectra to generate microscopic reaction rates: an ultrafine spectrum for an entire fuel pin and coarser spectra for each depletion region. Errors in reaction rates introduced by this method are mitigated by a hybrid usage of direct online reaction rate tallies for several important fissile nuclides. The linear system to appear in the solution process adopting the CRAM is solved by the Gauss-Seidel method which can be easily vectorized on GPUs. With the accelerated depletion methods, only about 10% of MC calculation time is consumed for depletion, so an accurate full core cycle depletion calculation for a commercial power reactor (BEAVRS) can be done in 16 h with 24 consumer-grade GPUs.

회분식 반응기에서의 공정변수 변화에 의한 침강성 탄산칼슘 제조 (Preparation of colloidal calcium carbonate by change of experimental condition at batch reactor)

  • 신보철;한상오;김주호;송지훈;송근호;이광래
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.141-147
    • /
    • 2001
  • For the preparation of calcium carbonate particles from aqueous $Ca(OH)_2$ slurry, carbonation reaction of aqueous $Ca(OH)_2$ slurry was carried out by batch method the $CO_2$ into reactor filled with aqueous slurry of $Ca(OH)_2$. The concentration of $Ca(OH)_2$ varies from 1.00 to 7.00wt%, reactor temperature at 20 and $40^{\circ}C$, and reactor pressure from atmospheric pressure to $6.0kg_f/cm^2$. Crystal structure of calcium carbonate was of calcite, the particle size were about $0.05{\sim}2.0{\mu}m$, and the particle shape was cubic and spindle. When reactor temperature was higher, particle size of calcium carbonate was bigger and particle shape was varied, but reaction rate was increased. When reactor pressure was higher, particle size of calcium carbonate was smaller, particle shape was cubic, and reaction rate was increased.

  • PDF

SVE 및 생물학적 공법을 이용한 TPH 오염토양처리에 관한 연구 (The Study on the Remediation of Contaminated Soil as TPH using SVE and Bioremediation)

  • 김정권
    • 한국환경과학회지
    • /
    • 제17권1호
    • /
    • pp.97-105
    • /
    • 2008
  • This study examined the contaminated soils with an indicator of TPH using SVE (Soil Vapor Extraction) and biological treatments. Their results are as follows. Water content in the polluted soils slowly decreased from 15% during the initial experimental condition to 10% during the final condition. Purification of polluted soils by Bioventing system is likely to hinder the microbial activity due to decrease of water content. Removal rate of TPH in the upper reaction chamber was a half of initial removal rate at the 25th day of the experiment. The removal rate in the lower reaction chamber was 45% with concentration of 995.4 mg/kg. When the Bioventing is used the removal rate at the 14th day of the experiment was 53%, showing 7 day shortenting. Since the Bioventing method control the microbial activity due to dewatering of the polluted soil, SVE method is likely to be preferable to remove in-situ TPH. The reactor that included microbes and nutrients showed somewhat higher removal rate of TPH than the reactor that included nurtients only during experimental period. In general, the concentration showed two times peaks and then decreased, followed by slight variation of the concentration in low concentration levels. Hence, in contrast to SVE treatment, the biological treatment tend to show continuous repetitive peaks of concentration followed by concentration decrease.