• Title/Summary/Keyword: reaction network

Search Result 364, Processing Time 0.023 seconds

REMARKS ON CRITERIA FOR THE EXISTENCE OF A POSITIVE EQUILIBRIUM IN REACTION NETWORKS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.949-953
    • /
    • 2011
  • It is interesting to know the behavior of a network from its structure. One interesting topic is to find a relation between the existence of a positive equilibrium of the reaction network and its structure. One approach to study this topic is using the concept of deficiency. Another is using some conditions on nodes, which can apply to large-size networks compared to deficiency. In this work, we show the relation between deficiency and the conditions.

AN ELEMENTARY PROOF OF THE EXISTENCE OF A POSITIVE EQUILIBRIUM IN REACTION NETWORKS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1545-1552
    • /
    • 2010
  • It is interesting to know the behavior of a network from its structure. One interesting topic is to find a relation between the existence of a positive equilibrium of the reaction network and its structure. One approach to study this topic is using the concept of deficiency. In this work, we develop an algorithm and show an elementary proof of the relation based on the algorithm and deficiency.

Effect of Reaction Conditions on the Preparation of Nano-sized Ni Powders inside a Nonionic Polymer

  • Kim, Tea-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.462-463
    • /
    • 2006
  • Monodispersed and nano-sized Ni powders were synthesized from aqueous nickel sulfate hexahydrate $(NiSO_4{\cdot}6H_2O)$ inside nonionic polymer network by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The effect of reaction conditions such as the amount of sucrose and a various reaction temperature, nickel sulfate hexahydrate molarity. The influence of a nonionic polymer network on the particle size of the prepared Ni powders was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle size analysis (PSA). The results showed that the obtained Ni powders were strong by dependent of the reaction conditions. In particular, the Ni powders prepared inside a nonionic polymer network had smooth spherical shape and narrow particle size distribution.

  • PDF

Optimization of Posture for Humanoid Robot Using Artificial Intelligence (인공지능을 이용한 휴머노이드 로봇의 자세 최적화)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

A GRAPHICAL ALGORITHM FOR CALCULATING THE RANKS OF COMPLEX REACTION NETWORKS

  • Choo, S.M.;Lee, N.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.787-792
    • /
    • 2012
  • We present a graphical algorithm and theorems for calculating the ranks of reaction networks. The ranks are needed to study behaviors of the networks from their structures. This approach can graphically simplify complex networks for the calculation. We show an example of a large network for the practical advantage.

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

Multi-step Reactions on Microchip Platform Using Nitrocellulose Membrane Reactor

  • Park, Sung-Soo;Joo, Hwang-Soo;Cho, Seung-Il;Kim, Min-Su;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.257-262
    • /
    • 2003
  • A straightforward and effective method is presented for immobilizing enzymes on a microchip platform without chemically modifying a micro-channel or technically microfabricating a column reactor and fluid channel network. The proposed method consists of three steps: the reconstitution of a nitrocellulose (NC) membrane on a plane substrate without a channel network, enzyme immobilization on the NC membrane, and the assembly of another substrate with a fabricated channel network. As a result, enzymes can be stably and efficiently immobilized on a microchip. To evaluate the proposed method, two kinds of enzymatic reaction are applied: a sequential two-step reaction by one enzyme, alkaline phosphatase, and a coupled reaction by two enzymes, glucose oxidase and peroxidase, for a glucose assay.

A System for Extraction of Audience Reaction Based on Neural Network (신경회로망 기반의 관객 반응 추출 시스템)

  • Baek, Yeong-Tae;You, Eun-Soon;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • Emotional reaction of audience can be decided by observing reaction of audience for content. We can use a method to analyze visual data from video camera to detect reaction of audience fast and economically. This paper proposes the method and system to observe audience reaction from visual data of audience and define via neural network. Also we propose a new method to detect automatically an area for audience reaction with face detection to improve a fixed area assignment method which has a limitation not to adapt depending on audiences. Additionally, the evaluation is implemented to show that the proposed method and system is effective. The proposed method showed the performance elevation of 10.5 % (7.75 hit ration) compared to a fixed area assignment method.

Analytical Solution of Multi-species Transport Equations Coupled with a First-order Reaction Network Under Various Boundary Conditions (다양한 경계조건을 가진 일차 반응 네트워크로 결합된 다종 오염물 거동 해석해)

  • Suk, Hee-Jun;Chae, Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.46-57
    • /
    • 2011
  • In this study, analytical solution of multip-species transport equations coupled with a first-order reaction network under constant concentration boundary condition or total flux boundary condition is obtained using similarity transformation approach of Clement et al. (2000). The study shows the schematic process about how multi-species transport equations with first-order sequential reaction network is transformed through the similarity transformation approach into independent and uncoupled single species transport equations with first-order reaction. The analytical solution was verified through the comparison with popular commercial programs such as 2DFATMIC and RT3D. The analytical solution can be utilized in nuclear waste sites where radioactive contaminants and their daughter products occur and in industrial complex cities where chlorinated solvent such as PCE, TCE, and its biodegradation products produces. In addition, it can help the verification of the developed numerical code.

A study on coagulant dosing process in water purification system (상수처리시스템의 응집제 주입공정 모델링에 관한 연구)

  • 남의석;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.317-320
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on the water quality such as turbidity, temperature, pH and alkalinity etc. However, the process of chemical reaction to improve water quality by the chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts or jar-test results. This paper presents the method of deriving the optimum dosing rate of coagulant, PAC(Polymerized Aluminium Chloride) for coagulant dosing process in water purification system. A neural network model is developed for coagulant dosing and purifying process. The optimum coagulant dosing rate can be derived the neural network model. Conventionally, four input variables (turbidity, temperature, pH, alkalinity of raw water) are known to be related to the process, while considering the relationships to the reaction of coagulation and flocculation. Also, the turbidity in flocculator is regarded as a new input variable. And the genetic algorithm is utilized to identify the neural network structure. The ability of the proposed scheme validated through the field test is proved to be of considerable practical value.

  • PDF